skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 3, 2026

Title: On the Origin of Spectral Features Observed during Thermonuclear X-Ray Bursts and in the Aftermath Emission of a Long Burst from 4U 1820–30
Abstract We study 15 thermonuclear X-ray bursts from 4U 1820–30 observed with the Neutron Star Interior Composition Explorer (NICER). We find evidence of a narrow emission line at 1.0 keV and three absorption lines at 1.7, 3.0, and 3.75 keV, primarily around the photospheric radius expansion phase of most bursts. The 1.0 keV emission line remains constant, while the absorption features, attributed to wind-ejected species, are stable but show slight energy shifts, likely due to combined effects of Doppler and gravitational redshifts. We also examine with NICER the “aftermath” of a long X-ray burst (a candidate superburst observed by MAXI) on 2021 August 23 and 24. The aftermath emission recovers within half a day from a flux depression. During this recovery phase, we detect two emission lines at 0.7 and 1 keV, along with three absorption lines whose energies decrease to 1.57, 2.64, and 3.64 keV. Given the nature of the helium white dwarf companion, these absorption lines during the aftermath may originate from an accretion flow, but only if the accretion environment is significantly contaminated by nuclear ashes from the superburst. This provides evidence of temporary metal enhancement in the accreted material due to strong wind loss. Moreover, we suggest that the absorption features observed during the short X-ray bursts and in the superburst aftermath share a common origin in heavy nuclear ashes enriched with elements like Si, Ar, Ca, or Ti, either from the burst wind or from an accretion flow contaminated by the burst wind.  more » « less
Award ID(s):
2209429 1927130
PAR ID:
10635613
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
986
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Irradiation of the accretion disc causes reflection signatures in the observed X-ray spectrum, encoding important information about the disc structure and density. A Type I X-ray burst will strongly irradiate the accretion disc and alter its properties. Previous numerical simulations predicted the evolution of the accretion disc due to an X-ray burst. Here, we process time-averaged simulation data of six time intervals to track changes in the reflection spectrum from the burst onset to just past its peak. We divide the reflecting region of the disc within r ≲ 50 km into six to seven radial zones for every time interval and compute the reflection spectra for each zone. We integrate these reflection spectra to obtain a total reflection spectrum per time interval. The burst ionizes and heats the disc, which gradually weakens all emission lines. Compton scattering and bremsstrahlung rates increase in the disc during the burst rise, and the soft excess at <3 keV rises from ≈4 to ≈38 per cent of the total emission at the burst peak. A soft excess is expected to be ubiquitous in the reflection spectra of X-ray bursts. Structural disc changes such as inflation because of heating or drainage of the inner disc due to Poynting–Robertson drag affect the strength of the soft excess. Further studies on the dependence of the reflection spectrum characteristics to changes in the accretion disc during an X-ray burst may lead to probes of the disc geometry. 
    more » « less
  2. Abstract We present the tidal disruption event (TDE) AT2022lri, hosted in a nearby (≈144 Mpc) quiescent galaxy with a low-mass massive black hole (104M<MBH< 106M). AT2022lri belongs to the TDE-H+He subtype. More than 1 Ms of X-ray data were collected with NICER, Swift, and XMM-Newton from 187 to 672 days after peak. The X-ray luminosity gradually declined from 1.5 × 1044erg s−1to 1.5 × 1043erg s−1and remains much above the UV and optical luminosity, consistent with a super-Eddington accretion flow viewed face-on. Sporadic strong X-ray dips atop a long-term decline are observed, with a variability timescale of ≈0.5 hr–1 days and amplitude of ≈2–8. When fitted with simple continuum models, the X-ray spectrum is dominated by a thermal disk component with inner temperature going from ∼146 to ∼86 eV. However, there are residual features that peak around 1 keV, which, in some cases, cannot be reproduced by a single broad emission line. We analyzed a subset of time-resolved spectra with two physically motivated models describing a scenario either where ionized absorbers contribute extra absorption and emission lines or where disk reflection plays an important role. Both models provide good and statistically comparable fits, show that the X-ray dips are correlated with drops in the inner disk temperature, and require the existence of subrelativistic (0.1–0.3c) ionized outflows. We propose that the disk temperature fluctuation stems from episodic drops of the mass accretion rate triggered by magnetic instabilities or/and wobbling of the inner accretion disk along the black hole’s spin axis. 
    more » « less
  3. Abstract The recurrent nova RS Ophiuchi (RS Oph) underwent its most recent eruption on 2021 August 8 and became the first nova to produce both detectable GeV and TeV emission. We used extensive X-ray monitoring with the Neutron Star Interior Composition Explorer Mission (NICER) to model the X-ray spectrum and probe the shock conditions throughout the 2021 eruption. The rapidly evolving NICER spectra consisted of both line and continuum emission that could not be accounted for using a single-temperature collisional equilibrium plasma model with an absorber that fully covered the source. We successfully modeled the NICER spectrum as a nonequilibrium ionization collisional plasma with partial covering absorption. The temperature of the nonequilibrium plasma shows a peak on day 5 with akTof approximately 24 keV. The increase in temperature during the first five days could have been due to increasing contribution to the X-ray emission from material behind fast polar shocks or a decrease is the amount of energy being drained from the shocks into particle acceleration during that period. The absorption showed a change from fully covering the source to having a covering fraction of roughly 0.4, suggesting a geometrical evolution of the shock region within the complex global distribution of the circumstellar material. These findings show evidence of the ejecta interacting with some dense equatorial shell initially, and with less dense material in the bipolar regions at later times during the eruption. 
    more » « less
  4. Abstract The AGN STORM 2 Collaboration targeted the Seyfert 1 galaxy Mrk 817 for a year-long multiwavelength, coordinated reverberation mapping campaign including Hubble Space Telescope, Swift, XMM-Newton, NICER, and ground-based observatories. Early observations with NICER and XMM revealed an X-ray state 10 times fainter than historical observations, consistent with the presence of a new dust-free, ionized obscurer. The following analysis of NICER spectra attributes variability in the observed X-ray flux to changes in both the column density of the obscurer by at least one order of magnitude ( N H ranges from 2.85 − 0.33 + 0.48 × 10 22 cm − 2 to 25.6 − 3.5 + 3.0 × 10 22 cm − 2 ) and the intrinsic continuum brightness (the unobscured flux ranges from 10 −11.8 to 10 −10.5 erg s −1 cm −2 ). While the X-ray flux generally remains in a faint state, there is one large flare during which Mrk 817 returns to its historical mean flux. The obscuring gas is still present at lower column density during the flare, but it also becomes highly ionized, increasing its transparency. Correlation between the column density of the X-ray obscurer and the strength of UV broad absorption lines suggests that the X-ray and UV continua are both affected by the same obscuration, consistent with a clumpy disk wind launched from the inner broad-line region. 
    more » « less
  5. Abstract We report on NICER X-ray monitoring of the magnetar SGR 1830−0645 covering 223 days following its 2020 October outburst, as well as Chandra and radio observations. We present the most accurate spin ephemerides of the source so far: ν = 0.096008680(2) Hz, ν ̇ = − 6.2 ( 1 ) × 10 − 14 Hz s −1 , and significant second and third frequency derivative terms indicative of nonnegligible timing noise. The phase-averaged 0.8–7 keV spectrum is well fit with a double-blackbody (BB) model throughout the campaign. The BB temperatures remain constant at 0.46 and 1.2 keV. The areas and flux of each component decreased by a factor of 6, initially through a steep decay trend lasting about 46 days, followed by a shallow long-term one. The pulse shape in the same energy range is initially complex, exhibiting three distinct peaks, yet with clear continuous evolution throughout the outburst toward a simpler, single-pulse shape. The rms pulsed fraction is high and increases from about 40% to 50%. We find no dependence of pulse shape or fraction on energy. These results suggest that multiple hot spots, possibly possessing temperature gradients, emerged at outburst onset and shrank as the outburst decayed. We detect 84 faint bursts with NICER, having a strong preference for occurring close to the surface emission pulse maximum—the first time this phenomenon is detected in such a large burst sample. This likely implies a very low altitude for the burst emission region and a triggering mechanism connected to the surface active zone. Finally, our radio observations at several epochs and multiple frequencies reveal no evidence of pulsed or burst-like radio emission. 
    more » « less