skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 10, 2026

Title: Sediment Storage Behind Low‐Head Dams: Assessing Potential Contribution to Reservoir Sedimentation in Kansas, USA
Low-head dams (LHDs) are widespread in river systems, yet the volume of sediment impounded behind them remains largely unquantified. Failure or planned removal of these often-aging structures can mobilize stored sediment, posing added risk to reservoirs already losing capacity to sedimentation. In Kansas, the failure of an LHD in May 2018 released sediment equivalent to ~25% of the downstream reservoir's annual accumulation and motivated a broader assessment of storage behind other LHDs. Addressing this knowledge gap, this study quantifies sediment storage behind LHDs located upstream of three federal reservoirs: Tuttle Creek Lake, Perry Lake, and Kanopolis Lake. An integrated approach was employed, combining remote sensing for LHD identification with field-based bathymetric surveys and sediment analysis to directly measure accumulated sediment volumes (VLHD) at representative sites and to estimate VLHD at remotely sensed sites. The relative storage for individual LHDs, expressed as a fraction of downstream annual reservoir sedimentation (fARS), ranged from 0.005 to 0.659, with a median fARS of 0.025. Storage volume (VLHD) was more closely related to local physical properties of LHDs—such as dam height and width—than watershed-scale drivers, such as precipitation and drainage area. Bathymetric maps revealed scour holes immediately upstream of LHDs, typically centered 20–50 m upstream and up to ~1.3 m deep, indicating partial sediment continuity and dynamic equilibrium. This research provides crucial data to inform regional sediment management and enhance reservoir sustainability in Kansas and offers a transferable methodology for quantifying the contribution of LHDs in other watersheds.  more » « less
Award ID(s):
2500251
PAR ID:
10635653
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
John Wiley & Sons Ltd
Date Published:
Journal Name:
River Research and Applications
ISSN:
1535-1459
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Most terrestrial allochthonous organic matter enters river networks through headwater streams during high flow events. In headwaters, allochthonous inputs are substantial and variable, but become less important in streams and rivers with larger watersheds. As allochthonous dissolved organic matter (DOM) moves downstream, the proportion of less aromatic organic matter with autochthonous characteristics increases. How environmental factors converge to control this transformation of DOM at a continental scale is less certain. We hypothesized that the amount of time water has spent travelling through surface waters of inland systems (streams, rivers, lakes, and reservoirs) is correlated to DOM composition. To test this hypothesis, we used established river network scaling relationships to predict relative river network flow‐weighted travel time (FWTT) of water for 60 stream and river sites across the contiguous United States (3090 discrete samples over 10 water years). We estimated lentic contribution to travel times with upstream in‐network lake and reservoir volume. DOM composition was quantified using ultraviolet and visible absorption and fluorescence spectroscopy. A combination of FWTT and lake and reservoir volume was the best overall predictor of DOM composition among models that also incorporated discharge, specific discharge, watershed area, and upstream channel length. DOM spectral slope ratio (R2 = 0.77) and Freshness Index (R2 = 0.78) increased and specific ultraviolet absorbance at 254 nm (R2 = 0.68) and Humification Index (R2 = 0.44) decreased across sites as a function of FWTT and upstream lake volume. This indicates autochthonous‐like DOM becomes continually more dominant in waters with greater FWTT. We assert that river FWTT can be used as a metric of the continuum of DOM composition from headwaters to rivers. The nature of the changes to DOM composition detected suggest this continuum is driven by a combination of photo‐oxidation, biological processes, hydrologically varying terrestrial subsidies, and aged groundwater inputs. 
    more » « less
  2. null (Ed.)
    Considerable research over the past several decades shows that dams, especially large, flow regulating structures, fragment watersheds and serve to disconnect the normative downstream flux of sediment and nutrients. Less attention has addressed smaller, channel-spanning Run-of-River (RoR) dams that are more commonly distributed throughout watersheds. Taking advantage of a suite of RoR dams in New England (USA), we quantify bedload flux into, through, and beyond the reservoir of five RoR dams and calculate the residence time of gravel clasts within the reservoir. To accomplish this goal, we embedded Radio Frequency Identification (RFID) PIT tags in 791 gravel clasts ranging in size from 15 mm to 81 mm which were subsequently deployed within and upstream of the impounded reservoirs. Among the 503 tracers that were transported from their deployment location, the median cumulative distance traveled was 30 m and the maximum cumulative displacement during the study period 758 m. Of the total tagged rocks placed at all five sites, 276 rocks were displaced over the dam, 204 of which spent time in the reservoir between high discharge events; the rest were transmitted downstream in a single high discharge event. Among those tracers that spent time in the reservoir prior to transmission over the dam, the average reservoir residence times at the different sites ranged from 19 - 203 days. The median grain size of tracers that were transported over the dam were identical to those that moved during the study period and similar to the median grain size of the channel bed. The distribution of virtual velocities of those tracers that moved was approximately log-normal and very broadly distributed over more than six orders of magnitude. An analysis of variance revealed that the distribution of velocities was partitioned into two statistically similar groups; with slower velocities in the two smaller watersheds (13 km2 – 21 km2) compared to the larger watersheds (89 km2 – 438 km2). We conclude that RoR dams transmit and trap the upstream sediment supply within the same range of physical conditions that produce mobility and trapping in the river’s natural reach-scale morphological units. Since RoR dams are likely not trapping more sediment than is typically sequestered in natural river reaches, these dams do not disconnect the normative downstream flux of sediment nor result in channel morphological disequilibrium downstream of the dam. However, the minimal effect that small, channel spanning RoR dams have on the morphological equilibrium state of a channel does not suggest that RoR dams have no ecological footprint. 
    more » « less
  3. Water column chlorophyll a was analyzed from 2014 to 2023 in seven freshwater reservoirs in southwestern Virginia (VA), USA, and one freshwater lake in central New Hampshire (NH), USA. These waterbodies are: Beaverdam Reservoir (Vinton, VA), Carvins Cove Reservoir (Roanoke, VA), Claytor Lake (Pulaski, VA), Falling Creek Reservoir (Vinton, VA), Gatewood Reservoir (Pulaski, VA), Smith Mountain Lake (Bedford, VA), Spring Hollow Reservoir (Salem, VA), and Lake Sunapee (Sunapee, NH). Beaverdam, Carvins Cove, Falling Creek, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia; Gatewood Reservoir is a drinking water source for the Town of Pulaski, Virginia; and Smith Mountain Lake is jointly treated by the Bedford Regional Water Authority and the Western Virginia Water Authority as a drinking water source for Franklin County, Virginia. Claytor Lake is managed for hydroelectric power generation by the Appalachian Power Company. Lake Sunapee is a glacially-formed lake known for its oligotrophic water quality. The dataset consists of depth profiles of chlorophyll a samples generally measured at the deepest site of each reservoir adjacent to the dam or at the buoy site of Lake Sunapee. The water column samples were collected approximately fortnightly from March-April and weekly from May-October at Falling Creek Reservoir and Beaverdam Reservoir, approximately fortnightly from May-August in most years at Carvins Cove Reservoir, approximately fortnightly from May-August in Gatewood and Spring Hollow Reservoirs from 2014-2016, approximately fortnightly from May-August of 2014 in Smith Mountain Lake, sporadically from May-August of 2014 in Claytor Lake, and sporadically from June-August of 2021 and 2022 in Lake Sunapee. Additional chlorophyll a samples were collected at multiple upstream and inflow sites along tributaries to Beaverdam and Falling Creek Reservoirs in summer 2019. The water samples collected were analyzed for both phaeophytin and chlorophyll a to quantify and correct for degraded phytoplankton within the sample. 
    more » « less
  4. Water column chlorophyll a was analyzed from 2014 to 2024 in seven freshwater reservoirs in southwestern Virginia (VA), USA, and one freshwater lake in central New Hampshire (NH), USA. These waterbodies are: Beaverdam Reservoir (Vinton, VA), Carvins Cove Reservoir (Roanoke, VA), Claytor Lake (Pulaski, VA), Falling Creek Reservoir (Vinton, VA), Gatewood Reservoir (Pulaski, VA), Smith Mountain Lake (Bedford, VA), Spring Hollow Reservoir (Salem, VA), and Lake Sunapee (Sunapee, NH). Beaverdam, Carvins Cove, Falling Creek, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia; Gatewood Reservoir is a drinking water source for the Town of Pulaski, Virginia; and Smith Mountain Lake is jointly treated by the Bedford Regional Water Authority and the Western Virginia Water Authority as a drinking water source for Franklin County, Virginia. Claytor Lake is managed for hydroelectric power generation by the Appalachian Power Company. Lake Sunapee is a glacially-formed lake known for its oligotrophic water quality. The dataset consists of depth profiles of chlorophyll a samples generally measured at the deepest site of each reservoir adjacent to the dam or at the buoy site of Lake Sunapee. The water column samples were collected approximately fortnightly from March-April and weekly from May-October at Falling Creek Reservoir and Beaverdam Reservoir, approximately fortnightly from May-August in most years at Carvins Cove Reservoir, approximately fortnightly from May-August in Gatewood and Spring Hollow Reservoirs from 2014-2016, approximately fortnightly from May-August of 2014 in Smith Mountain Lake, sporadically from May-August of 2014 in Claytor Lake, and sporadically from June-August of 2021-2022 and 2024 in Lake Sunapee. Additional chlorophyll a samples were collected at multiple upstream and inflow sites along tributaries to Beaverdam and Falling Creek Reservoirs in summer 2019. The water samples collected were analyzed for both phaeophytin and chlorophyll a to quantify and correct for degraded phytoplankton within the sample. 
    more » « less
  5. Water column chlorophyll a was analyzed from 2014 to 2022 in seven freshwater reservoirs in southwestern Virginia (VA), USA, and one freshwater lake in central New Hampshire (NH). These waterbodies are: Beaverdam Reservoir (Vinton, VA), Carvins Cove Reservoir (Roanoke, VA), Claytor Lake (Pulaski, VA), Falling Creek Reservoir (Vinton, VA), Gatewood Reservoir (Pulaski, VA), Smith Mountain Lake (Bedford, VA), Spring Hollow Reservoir (Salem, VA), and Lake Sunapee (Sunapee, NH). Beaverdam, Carvins Cove, Falling Creek, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia; Gatewood Reservoir is a drinking water source for the Town of Pulaski, Virginia; and Smith Mountain Lake is jointly treated by the Bedford Regional Water Authority and the Western Virginia Water Authority as a drinking water source for Franklin County, Virginia. Claytor Lake is utilized for hydroelectric power generation by the Appalachian Power Company. Lake Sunapee is a glacially-formed lake known for its oligotrophic water quality. The dataset consists of depth profiles of chlorophyll a samples generally measured at the deepest site of each reservoir adjacent to the dam. The water column samples were collected approximately fortnightly from March-April and weekly from May-October at Falling Creek Reservoir and Beaverdam Reservoir, approximately fortnightly from May-August in most years at Carvins Cove Reservoir, approximately fortnightly from May-August in Gatewood and Spring Hollow Reservoirs from 2014-2016, approximately fortnightly from May-August of 2014 in Smith Mountain Lake, sporadically from May-August of 2014 in Claytor Lake, and sporadically from June-August of 2021 and 2022 in Lake Sunapee. Additional chlorophyll a samples were collected at multiple upstream and inflow sites along tributaries to Beaverdam and Falling Creek Reservoirs in summer 2019. The water samples collected were analyzed for both phaeophytin and chlorophyll a to quantify and correct for degraded phytoplankton within the sample. 
    more » « less