skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 26, 2026

Title: RapidNet: Multi-Level Dilated Convolution Based Mobile Backbone
Vision transformers (ViTs) have dominated computer vision in recent years. However, ViTs are computationally expensive and not well suited for mobile devices; this led to the prevalence of convolutional neural network (CNN) and ViT-based hybrid models for mobile vision applications. Recently, Vision GNN (ViG) and CNN hybrid models have also been proposed for mobile vision tasks. However, all of these methods remain slower compared to pure CNN-based models. In this work, we propose Multi-Level Dilated Convolutions to devise a purely CNN-based mobile backbone. Using Multi-Level Dilated Convolutions allows for a larger theoretical receptive field than standard convolutions. Different levels of dilation also allow for interactions between the short-range and long-range features in an image. Experiments show that our proposed model outperforms state-of-the-art (SOTA) mobile CNN, ViT, ViG, and hybrid architectures in terms of accuracy and/or speed on image classification, object detection, instance segmentation, and semantic segmentation. Our fastest model, RapidNet-Ti, achieves 76.3% top-1 accuracy on ImageNet-1K with 0.9 ms inference latency on an iPhone 13 mini NPU, which is faster and more accurate than MobileNetV2x1.4 (74.7% top-1 with 1.0 ms latency). Our work shows that pure CNN architectures can beat SOTA hybrid and ViT models in terms of accuracy and speed when designed properly  more » « less
Award ID(s):
2007284
PAR ID:
10635684
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3315-1083-1
Page Range / eLocation ID:
8302 to 8312
Subject(s) / Keyword(s):
Deep learning Vision GNN (ViG), Convolutional Neural Networks (CNN), Dilated Convolution
Format(s):
Medium: X
Location:
Tucson, AZ, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Vision graph neural networks (ViG) have demonstrated promise in vision tasks as a competitive alternative to conventional convolutional neural nets (CNN) and transformers (ViTs); however, common graph construction methods, such as k-nearest neighbor (KNN), can be expensive on larger images. While methods such as Sparse Vision Graph Attention (SVGA) have shown promise, SVGA’s fixed step scale can lead to over-squashing and missing multiple connections to gain the same information that could be gained from a long-range link. Through this observation, we propose a new graph construction method, Logarithmic Scalable Graph Construction (LSGC) to enhance performance by limiting the number of long-range links. To this end, we propose LogViG, a novel hybrid CNN-GNN model that utilizes LSGC. Furthermore, inspired by the successes of multiscale and high-resolution architectures, we introduce and apply a high-resolution branch and fuse features between our high-resolution and low-resolution branches for a multi-scale high-resolution Vision GNN network. Extensive experiments show that LogViG beats existing ViG, CNN, and ViT architectures in terms of accuracy, GMACs, and parameters on image classification and semantic segmentation tasks. Our smallest model, Ti-LogViG, achieves an average top-1 accuracy on ImageNet-1K of 79.9% with a standard deviation of ± 0.2%, 1.7% higher average accuracy than Vision GNN with a 24.3% reduction in parameters and 35.3% reduction in GMACs. Our work shows that leveraging long-range links in graph construction for ViGs through our proposed LSGC can exceed the performance of current state-of-the-art ViGs. 
    more » « less
  2. Image classification in remote sensing and geographic information system (GIS) data containing various land cover classes is essential for efficient and sustainable land use estimation and other tasks like object detection, localization, and segmentation. Deep learning (DL) techniques have shown tremendous potential in the GIS domain. While convolutional neural networks (CNNs) have dominated image analysis, transformers have proven to be a unifying solution for several AI-based processing pipelines. Vision transformers (ViTs) can have comparable and, in some cases, better accuracy than a CNN. However, they suffer from a significant drawback associated with the excessive use of training parameters. Using trainable parameters generously can have multiple advantages ranging from addressing model scalability to explainability. This can have a significant impact on model deployment in edge devices with limited resources, such as drones. In this research, we explore, without using pre-trained weights, how the inherent structure of vision transformers behaves with custom modifications. To verify our proposed approach, these architectures are trained on multiple land cover datasets. Experiments reveal that a combination of lightweight convolutional layers, including ShuffleNet, along with depthwise separable convolutions and average pooling can reduce the trainable parameters by 17.85% and yet achieve higher accuracy than the base mobile vision transformer (MViT). It is also observed that utilizing a combination of convolution layers along with multi-headed self-attention layers in MViT variants provides better performance for capturing local and global features, unlike the standalone ViT architecture, which utilizes almost 95% more parameters than the proposed MViT variant. 
    more » « less
  3. Vision graph neural networks (ViG) offer a new avenue for exploration in computer vision. A major bottleneck in ViGs is the inefficient k-nearest neighbor (KNN) operation used for graph construction. To solve this issue, we propose a new method for designing ViGs, Dynamic Axial Graph Construction (DAGC), which is more efficient than KNN as it limits the number of considered graph connections made within an image. Additionally, we propose a novel CNN-GNN architecture, GreedyViG, which uses DAGC. Extensive experiments show that GreedyViG beats existing ViG, CNN, and ViT architectures in terms of accuracy, GMACs, and parameters on image classification, object detection, instance segmentation, and semantic segmentation tasks. Our smallest model, GreedyViG-S, achieves 81.1% top-1 accuracy on ImageNet-1K, 2.9% higher than Vision GNN and 2.2% higher than Vision HyperGraph Neural Network (ViHGNN), with less GMACs and a similar number of parameters. Our largest model, GreedyViG-B obtains 83.9% top-1 accuracy, 0.2% higher than Vision GNN, with a 66.6% decrease in parameters and a 69% decrease in GMACs. GreedyViG-B also obtains the same accuracy as ViHGNN with a 67.3% decrease in parameters and a 71.3% decrease in GMACs. Our work shows that hybrid CNNGNN architectures not only provide a new avenue for designing efficient models, but that they can also exceed the performance of current state-of-the-art models. 
    more » « less
  4. Low-latency and low-power edge AI is crucial for Virtual Reality and Augmented Reality applications. Recent advances demonstrate that hybrid models, combining convolution layers (CNN) and transformers (ViT), often achieve a superior accuracy/performance tradeoff on various computer vision and machine learning (ML) tasks. However, hybrid ML models can present system challenges for latency and energy efficiency due to their diverse nature in dataflow and memory access patterns. In this work, we leverage architecture heterogeneity from Neural Processing Units (NPU) and Compute-In-Memory (CIM) and explore diverse execution schemas to efficiently execute these hybrid models. We introduce H4H-NAS, a two-stage Neural Architecture Search (NAS) framework to automate the design of efficient hybrid CNN/ViT models for heterogeneous edge systems featuring both NPU and CIM. We propose a two-phase incremental supernet training in our NAS framework to resolve gradient conflicts between sampled subnets caused by different types of blocks in a hybrid model search space. Our H4H-NAS approach is also powered by a performance estimator built with NPU performance results measured on real silicon, and CIM performance based on industry IPs. H4H-NAS searches hybrid CNN-ViT models with fine granularity and achieves significant (up to 1.34%) top-1 accuracy improvement on ImageNet. Moreover, results from our algorithm/hardware co-design reveal up to 56.08% overall latency and 41.72% energy improvements by introducing heterogeneous computing over baseline solutions. Overall, our framework guides the design of hybrid network architectures and system architectures for NPU+CIM heterogeneous systems. 
    more » « less
  5. Vision Transformers (ViTs) are built on the assumption of treating image patches as “visual tokens” and learn patch-to-patch attention. The patch embedding based tokenizer has a semantic gap with respect to its counterpart, the textual tokenizer. The patch-to-patch attention suffers from the quadratic complexity issue, and also makes it non-trivial to explain learned ViTs. To address these issues in ViT, this paper proposes to learn Patch-to-Cluster attention (PaCa) in ViT. Queries in our PaCa-ViT starts with patches, while keys and values are directly based on clustering (with a predefined small number of clusters). The clusters are learned end-to-end, leading to better tokenizers and inducing joint clustering-for-attention and attention-for-clustering for better and interpretable models. The quadratic complexity is relaxed to linear complexity. The proposed PaCa module is used in designing efficient and interpretable ViT backbones and semantic segmentation head networks. In experiments, the proposed methods are tested on ImageNet-1k image classification, MS-COCO object detection and instance segmentation and MIT-ADE20k semantic segmentation. Compared with the prior art, it obtains better performance in all the three benchmarks than the SWin [32] and the PVTs [47], [48] by significant margins in ImageNet-1k and MIT-ADE20k. It is also significantly more efficient than PVT models in MS-COCO and MIT-ADE20k due to the linear complexity. The learned clusters are semantically meaningful. Code and model checkpoints are available at https:/github.com/iVMCL/PaCaViT. 
    more » « less