Concept Bottleneck Models (CBM) are inherently interpretable models that factor model decisions into human-readable concepts. They allow people to easily understand why a model is failing, a critical feature for high-stakes applications. CBMs require manually specified concepts and often under-perform their black box counterparts, preventing their broad adoption. We address these shortcomings and are first to show how to construct high-performance CBMs without manual specification of similar accuracy to black box models. Our approach, Language Guided Bottlenecks (LaBo), leverages a language model, GPT-3, to define a large space of possible bottlenecks. Given a problem domain, LaBo uses GPT-3 to produce factual sentences about categories to form candidate concepts. LaBo efficiently searches possible bottlenecks through a novel submodular utility that promotes the selection of discriminative and diverse information. Ultimately, GPT-3's sentential concepts can be aligned to images using CLIP, to form a bottleneck layer. Experiments demonstrate that LaBo is a highly effective prior for concepts important to visual recognition. In the evaluation with 11 diverse datasets, LaBo bottlenecks excel at few-shot classification: they are 11.7% more accurate than black box linear probes at 1 shot and comparable with more data. Overall, LaBo demonstrates that inherently interpretable models can be widely applied at similar, or better, performance than black box approaches.
more »
« less
This content will become publicly available on March 5, 2026
ADAPTIVE TEST-TIME INTERVENTION FOR CONCEPT BOTTLENECK MODELS
Concept bottleneck models (CBM) aim to improve model interpretability by predicting human level “concepts” in a bottleneck within a deep learning model architecture. However, how the predicted concepts are used in predicting the target still either remains black-box or is simplified to maintain interpretability at the cost of prediction performance. We propose to use Fast Interpretable Greedy Sum- Trees (FIGS) to obtain Binary Distillation (BD). This new method, called FIGSBD, distills a binary-augmented concept-to-target portion of the CBM into an interpretable tree-based model, while maintaining the competitive prediction performance of the CBM teacher. FIGS-BD can be used in downstream tasks to explain and decompose CBM predictions into interpretable binary-concept-interaction attributions and guide adaptive test-time intervention. Across 4 datasets, we demonstrate that our adaptive test-time intervention identifies key concepts that significantly improve performance for realistic human-in-the-loop settings that only allow for limited concept interventions. All code is made available on Github (https://github.com/mattyshen/adaptiveTTI).
more »
« less
- PAR ID:
- 10635695
- Publisher / Repository:
- ICLR 2025
- Date Published:
- ISBN:
- 979-8-3313-2085-0
- Subject(s) / Keyword(s):
- Adaptive test-time, interpretable deep learning, Conceptual bottleneck models
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Modern machine learning has achieved impressive prediction performance, but often sacrifices interpretability, a critical consideration in high-stakes domains such as medicine. In such settings, practitioners often use highly interpretable decision tree models, but these suffer from inductive bias against additive structure. To overcome this bias, we propose Fast Interpretable Greedy-Tree Sums (FIGS), which generalizes the CART algorithm to simultaneously grow a flexible number of trees in summation. By combining logical rules with addition, FIGS is able to adapt to additive structure while remaining highly interpretable. Extensive experiments on real-world datasets show that FIGS achieves state-of-the-art prediction performance. To demonstrate the usefulness of FIGS in high-stakes domains, we adapt FIGS to learn clinical decision instruments (CDIs), which are tools for guiding clinical decision-making. Specifically, we introduce a variant of FIGS known as G-FIGS that accounts for the heterogeneity in medical data. G-FIGS derives CDIs that reflect domain knowledge and enjoy improved specificity (by up to 20% over CART) without sacrificing sensitivity or interpretability. To provide further insight into FIGS, we prove that FIGS learns components of additive models, a property we refer to as disentanglement. Further, we show (under oracle conditions) that unconstrained tree-sum models leverage disentanglement to generalize more efficiently than single decision tree models when fitted to additive regression functions. Finally, to avoid overfitting with an unconstrained number of splits, we develop Bagging-FIGS, an ensemble version of FIGS that borrows the variance reduction techniques of random forests. Bagging-FIGS enjoys competitive performance with random forests and XGBoost on real-world datasets.more » « less
-
Modern machine learning has achieved impressive prediction performance, but often sacrifices interpretability, a critical consideration in high-stakes domains such as medicine. In such settings, practitioners often use highly interpretable decision tree models, but these suffer from inductive bias against additive structure. To overcome this bias, we propose Fast Interpretable Greedy-Tree Sums (FIGS), which generalizes the Classification and Regression Trees (CART) algorithm to simultaneously grow a flexible number of trees in summation. By combining logical rules with addition, FIGS adapts to additive structure while remaining highly interpretable. Experiments on real-world datasets show FIGS achieves state-of-the-art prediction performance. To demonstrate the usefulness of FIGS in high-stakes domains, we adapt FIGS to learn clinical decision instruments (CDIs), which are tools for guiding decision-making. Specifically, we introduce a variant of FIGS known as Group Probability-Weighted Tree Sums (G-FIGS) that accounts for heterogeneity in medical data. G-FIGS derives CDIs that reflect domain knowledge and enjoy improved specificity (by up to 20% over CART) without sacrificing sensitivity or interpretability. Theoretically, we prove that FIGS learns components of additive models, a property we refer to as disentanglement. Further, we show (under oracle conditions) that tree-sum models leverage disentanglement to generalize more efficiently than single tree models when fitted to additive regression functions. Finally, to avoid overfitting with an unconstrained number of splits, we develop Bagging-FIGS, an ensemble version of FIGS that borrows the variance reduction techniques of random forests. Bagging-FIGS performs competitively with random forests and XGBoost on real-world datasets.more » « less
-
Recommending products to users with intuitive explanations helps improve the system in transparency, persuasiveness, and satisfaction. Existing interpretation techniques include post-hoc methods and interpretable modeling. The former category could quantitatively analyze input contribution to model prediction but has limited interpretation faithfulness, while the latter could explain model internal mechanisms but may not directly attribute model predictions to input features. In this study, we propose a novelDualInterpretableRecommendation model called DIRECT, which integrates ideas of the two interpretation categories to inherit their advantages and avoid limitations. Specifically, DIRECT makes use of item descriptions as explainable evidence for recommendation. First, similar to the post-hoc interpretation, DIRECT could attribute the prediction of a user preference score to textual words of the item descriptions. The attribution of each word is related to its sentiment polarity and word importance, where a word is important if it corresponds to an item aspect that the user is interested in. Second, to improve the interpretability of embedding space, we propose to extract high-level concepts from embeddings, where each concept corresponds to an item aspect. To learn discriminative concepts, we employ a concept-bottleneck layer, and maximize the coding rate reduction on word-aspect embeddings by leveraging a word-word affinity graph extracted from a pre-trained language model. In this way, DIRECT simultaneously achieves faithful attribution and usable interpretation of embedding space. We also show that DIRECT achieves linear inference time complexity regarding the length of item reviews. We conduct experiments including ablation studies on five real-world datasets. Quantitative analysis, visualizations, and case studies verify the interpretability of DIRECT. Our code is available at:https://github.com/JacksonWuxs/DIRECT.more » « less
-
Machine learning in high-stakes domains, such as healthcare, faces two critical challenges: (1) generalizing to diverse data distributions given limited training data while (2) maintaining interpretability. To address these challenges, we propose an instance-weighted tree-sum method that effectively pools data across diverse groups to output a concise, rule-based model. Given distinct groups of instances in a dataset (e.g., medical patients grouped by age or treatment site), our method first estimates group membership probabilities for each instance. Then, it uses these estimates as instance weights in FIGS (Tan et al., 2022), to grow a set of decision trees whose values sum to the final prediction. We call this new method Group Probability-Weighted Tree Sums (G-FIGS). G-FIGS achieves state-of-theart prediction performance on important clinical datasets; e.g., holding the level of sensitivity fixed at 92%, G-FIGS increases specificity for identifying cervical spine injury (CSI) by up to 10% over CART and up to 3% over FIGS alone, with larger gains at higher sensitivity levels. By keeping the total number of rules below 16 in FIGS, the final models remain interpretable, and we find that their rules match medical domain expertise. All code, data, and models are released on Github.more » « less
An official website of the United States government
