Abstract Major- and trace-element data together with Nd and Sr isotopic compositions and 40Ar/39Ar age determinations were obtained for Late Cretaceous and younger volcanic rocks from north-central Colorado, USA, in the Southern Rocky Mountains to assess the sources of mantle-derived melts in a region underlain by thick (≥150 km) continental lithosphere. Trachybasalt to trachyandesite lava flows and volcanic cobbles of the Upper Cretaceous Windy Gap Volcanic Member of the Middle Park Formation have low εNd(t) values from −3.4 to −13, 87Sr/86Sr(t) from ~0.705 to ~0.707, high large ion lithophile element/high field strength element ratios, and low Ta/Th (≤0.2) values. These characteristics are consistent with the production of mafic melts during the Late Cretaceous to early Cenozoic Laramide orogeny through flux melting of asthenosphere above shallowly subducting and dehydrating oceanic lithosphere of the Farallon plate, followed by the interaction of these melts with preexisting, low εNd(t), continental lithospheric mantle during ascent. This scenario requires that asthenospheric melting occurred beneath continental lithosphere as thick as 200 km, in accordance with mantle xenoliths entrained in localized Devonian-age kimberlites. Such depths are consistent with the abundances of heavy rare earth elements (Yb, Sc) in the Laramide volcanic rocks, which require parental melts derived from garnet-bearing mantle source rocks. New 40Ar/39Ar ages from the Rabbit Ears and Elkhead Mountains volcanic fields confirm that mafic magmatism was reestablished in this region ca. 28 Ma after a hiatus of over 30 m.y. and that the locus of volcanism migrated to the west through time. These rocks have εNd(t) and 87Sr/86Sr(t) values equivalent to their older counterparts (−3.5 to −13 and 0.7038–0.7060, respectively), but they have higher average chondrite-normalized La/Yb values (~22 vs. ~10), and, for the Rabbit Ears volcanic field, higher and more variable Ta/Th values (0.29–0.43). The latter are general characteristics of all other post–40 Ma volcanic rocks in north-central Colorado for which literature data are available. Transitions from low to intermediate Ta/Th mafic volcanism occurred diachronously across southwest North America and are interpreted to have been a consequence of melting of continental lithospheric mantle previously metasomatized by aqueous fluids derived from the underthrusted Farallon plate. Melting occurred as remnants of the Farallon plate were removed and the continental lithospheric mantle was conductively heated by upwelling asthenosphere. A similar model can be applied to post–40 Ma magmatism in north-central Colorado, with periodic, east to west, removal of stranded remnants of the Farallon plate from the base of the continental lithospheric mantle accounting for the production, and western migration, of volcanism. The estimated depth of the lithosphere-asthenosphere boundary in north-central Colorado (~150 km) indicates that the lithosphere remains too thick to allow widespread melting of upwelling asthenosphere even after lithospheric thinning in the Cenozoic. The preservation of thick continental lithospheric mantle may account for the absence of oceanic-island basalt–like basaltic volcanism (high Ta/Th values of ~1 and εNd[t] > 0), in contrast to areas of southwest North America that experienced larger-magnitude extension and lithosphere thinning, where oceanic-island basalt–like late Cenozoic basalts are common.
more »
« less
This content will become publicly available on August 16, 2026
USA ): Yellowstone Hotspot—North American Lithosphere Interactions at the Leading Edge of the Snake River Plain
ABSTRACT Hotspots are identified by time‐transgressive, linear chains of volcanoes across the crust. The existence of off‐axis or out‐of‐sequence volcanism, where volcanism does not fit in the age progression along a hotspot track, complicates hotspot identification and hotspot‐lithosphere interaction. The Snake River plain–Yellowstone (SRPY) volcanic province is the archetypal example of a continental hotspot, and south‐southeast of Yellowstone, we document ~8–0.5 Ma magmatism. These off‐axis and out‐of‐sequence SRPY rocks formed in an intraplate setting but geochemically resemble subduction zone magmas, which we attribute to metasomatism of Archean Wyoming craton mantle. Off‐axis volcanism exists where mantle upwelling and associated extension occurs (e.g., oceanic hotspots and continental/oceanic rifts). We suggest that off‐axis SRPY magmatism peripheral to Yellowstone is a continental hotspot analogue and occurs due to migrating thermal uplift, mantle melting, and associated lithosphere extension, which facilitates small volume melt production and eruption and is an under‐assessed hazard.
more »
« less
- Award ID(s):
- 2002759
- PAR ID:
- 10635863
- Publisher / Repository:
- Brueseke, Matthew B.
- Date Published:
- Journal Name:
- Terra Nova
- Edition / Version:
- Final
- ISSN:
- 0954-4879
- Subject(s) / Keyword(s):
- mantle volcanism volcanic hazard intraplate mantle plume Yellowstone Snake River Plain Yellowstone hotspot Wyoming
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The spatial distribution of the geochemical domains hosting recycled crust and primordial (high‐3He/4He) reservoirs, and how they are linked to mantle convection, are poorly understood. Two continent‐sized seismic anomalies located near the core‐mantle boundary—called the Large Low Shear Wave Velocity Provinces (LLSVPs)—are potential geochemical reservoir hosts. It has been suggested that high‐3He/4He hotspots are spatially confined to the LLSVPs, hotspots sampling recycled continental crust are associated with only one of the LLSVPs, and recycled continental crust shows no relationship with latitude. We reevaluate the links between LLSVPs and isotopic signatures of hotspot lavas using improved mantle flow models including plume conduit advection. While most hotspots with the highest‐3He/4He can indeed be traced to the LLSVP interiors, at least one high‐3He/4He hotspot, Yellowstone, is located outside of the LLSVPs. This suggests high‐3He/4He is not geographically confined to the LLSVPs. Instead, a positive correlation between hotspot buoyancy flux and maximum hotspot3He/4He suggests that it is plume dynamics (i.e., buoyancy), not geography, which determines whether a dense, deep, and possibly widespread high‐3He/4He reservoir is entrained. We also show that plume‐fed EM hotspots (enriched mantle, with low‐143Nd/144Nd), signaling recycled continental crust, are spatially linked to both LLSVPs, and located primarily in the southern hemisphere. Lastly, we confirm that hotspots sampling HIMU (“high‐μ,” or high238U/204Pb) domains are not spatially limited to the LLSVPs. These findings clarify and advance our understanding of deep mantle reservoir distributions, and we discuss how continental and oceanic crust subduction is consistent with the spatial decoupling of EM and HIMU.more » « less
-
Abstract To deconvolve contributions from the four overlapping hotspots that form the “hotspot highway” on the Pacific plate—Samoa, Rarotonga, Arago-Rurutu, and Macdonald—we geochemically characterize and/or date (by the 40Ar/39Ar method) a suite of lavas sampled from the eastern region of the Samoan hotspot and the region “downstream” of the Samoan hotspot track. We find that Papatua seamount, located ~60 km south of the axis of the Samoan hotspot track, has lavas with both a HIMU (high μ = 238U/204Pb) composition (206Pb/204Pb = 20.0), previously linked to one of the Cook-Austral hotspots, and an enriched mantle I (EM1) composition, which we interpret to be rejuvenated and Samoan in origin. We show that these EM1 rejuvenated lavas at Papatua are geochemically similar to rejuvenated volcanism on Samoan volcanoes and suggest that flexural uplift, caused by tectonic forces associated with the nearby Tonga trench, triggered a new episode of melting of Samoan mantle material that had previously flattened and spread laterally along the base of the Pacific plate under Papatua, resulting in volcanism that capped the previous HIMU edifice. We argue that this process generated Samoan rejuvenated volcanism on the older Cook-Austral volcano of Papatua. We also study Waterwitch seamount, located ~820 km WNW of the Samoan hotspot, and provide an age (10.49 ± 0.09 Ma) that places it on the Samoan hotspot trend, showing that it is genetically Samoan and not related to the Cook-Austral hotspots as previously suggested. Consequently, with the possible exception of the HIMU stage of Papatua seamount, there are currently no known Arago-Rurutu plume-derived lava flows sampled along the swath of Pacific seafloor that stretches between Rose seamount (~25 Ma) and East Niulakita seamount (~45 Ma), located 1400 km to the west. The “missing” ~20-million-year segment of the Arago-Rurutu hotspot track may have been subducted into the northern Tonga trench, or perhaps was covered by subsequent volcanism from the overlapping Samoan hotspot, and has thus eluded sampling. Finally, we explore tectonic reactivation as a cause for anomalously young volcanism present within the western end of the Samoan hotspot track.more » « less
-
Linear chains of seamounts, sourced from mantle plume processes, have the potential to refine plate motion models because the hotspot remains fixed relative to the moving lithospheric plate. However, to define plate motion, consistent seamount age progression and geometry are required. Some seamount chains, such as the Musician Seamount Province (MSP), have complex geometries and age distributions, which complicates calibrating plate motion. The MSP resides northwest of the Hawaiian Islands and is composed of seamounts and volcanic elongated ridges (VERs) that cover ∼420,000 km2 of Pacific seafloor. Here we provide new 40Ar/39Ar age determinations for a series of lava flows recovered from the MSP during expedition EX1708 of the National Oceanic and Atmospheric Administration's Ocean Exploration program. The MSP was built by four distinct volcanic processes: (1) age-progressive hotspot volcanism associated with the Euterpe Plume (ca. 98–79 Ma). (2) VER formation from plume-ridge channelization (ca. 97–94 Ma; 86–79 Ma) where the VERs only form when the hotspot is within ∼600 km of the ridge. (3) Eocene volcanism driven by extension during the ca. 50 Ma change in Pacific rotation poles (ca. 54–47 Ma). (4) Some near-ridge shear-driven upwelling or diffuse extensional volcanism that preceded the southern MSP lithosphere overriding the plume (ca. 86–84 Ma). By filtering lava flows with only robust statistically concordant 40Ar/39Ar age determinations as well as geologic setting, we develop a dataset of samples valuable for constraining Pacific plate motion. A local plate velocity of 42 ± 9 km/Ma for the 98–81 Ma time frame is calculated. Furthermore, the seamount track indicates that large shifts in Pacific rotation pole locations are required prior to 98 Ma and at ca. 81 Ma.more » « less
-
Abstract The upper mantle and transition zone beneath Antarctica and the surrounding oceans are among the poorest‐imaged regions of the Earth's interior. Over the last 15 years, several large broadband regional seismic arrays have been deployed, as have new permanent seismic stations. Using data from 297 Antarctic and 26 additional seismic stations south of ~40°S, we image the seismic structure of the upper mantle and transition zone using adjoint tomography. Over the course of 20 iterations, we utilize phase observations from three‐component seismograms containingP,S, Rayleigh, and Love waves, including reflections and overtones, generated by 270 earthquakes that occurred from 2001–2003 and 2007–2016. The new continental‐scale seismic model (ANT‐20) possesses regional‐scale resolution south of 60°S. In East Antarctica, thinner continental lithosphere is found beneath areas of Dronning Maud Land and Enderby‐Kemp Land. A continuous slow wave speed anomaly extends from the Balleny Islands through the western Ross Embayment and delineates areas of Cenozoic extension and volcanism that span both oceanic and continental regions. Slow wave speed anomalies are also imaged beneath Marie Byrd Land and along the Amundsen Sea Coast, extending to the Antarctic Peninsula. These anomalies are confined to the upper 200–250 km of the mantle, except in the vicinity of Marie Byrd Land where they extend into the transition zone and possibly deeper. Finally, slow wave speeds along the Amundsen Sea Coast link to deeper anomalies offshore, suggesting a possible connection with deeper mantle processes.more » « less
An official website of the United States government
