skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 29, 2026

Title: wgatools : an ultrafast toolkit for manipulating whole-genome alignments
Abstract SummaryWith the rapid development of long-read sequencing technologies, the era of individual complete genomes is approaching. We have developed wgatools, a cross-platform, ultrafast toolkit that supports a range of whole-genome alignment formats, offering practical tools for conversion, processing, evaluation, and visualization of alignments, thereby facilitating population-level genome analysis and advancing functional and evolutionary genomics. Availability and implementationwgatools supports diverse formats and can process, filter, and statistically evaluate alignments, perform alignment-based variant calling, and visualize alignments both locally and genome-wide. Built with Rust for efficiency and safe memory usage, it ensures fast performance and can handle large datasets consisting of hundreds of genomes. wgatools is published as free software under the MIT open-source license, and its source code is freely available at https://github.com/wjwei-handsome/wgatools and https://zenodo.org/records/14882797.  more » « less
Award ID(s):
2118743
PAR ID:
10635902
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Alkan, Can
Publisher / Repository:
Bioinformatics
Date Published:
Journal Name:
Bioinformatics
Volume:
41
Issue:
4
ISSN:
1367-4811
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract  Summary: While alignment has been the dominant approach for determining homology prior to phylogenetic inference, alignment-free methods can simplify the analysis, especially when analyzing genome-wide data. Furthermore, alignment-free methods present the only option for emerging forms of data, such as genome skims, which do not permit assembly. Despite the appeal, alignment-free methods have not been competitive with alignment-based methods in terms of accuracy. One limitation of alignment-free methods is their reliance on simplified models of sequence evolution such as Jukes–Cantor. If we can estimate frequencies of base substitutions in an alignment-free setting, we can compute pairwise distances under more complex models. However, since the strand of DNA sequences is unknown for many forms of genome-wide data, which arguably present the best use case for alignment-free methods, the most complex models that one can use are the so-called no strand-bias models. We show how to calculate distances under a four-parameter no strand-bias model called TK4 without relying on alignments or assemblies. The main idea is to replace letters in the input sequences and recompute Jaccard indices between k-mer sets. However, on larger genomes, we also need to compute the number of k-mer mismatches after replacement due to random chance as opposed to homology. We show in simulation that alignment-free distances can be highly accurate when genomes evolve under the assumed models and study the accuracy on assembled and unassembled biological data. Availability and implementationOur software is available open source at https://github.com/nishatbristy007/NSB. Supplementary informationSupplementary data are available at Bioinformatics Advances online. 
    more » « less
  2. Martelli, Pier Luigi (Ed.)
    Abstract MotivationPairwise sequence alignment remains a fundamental problem in computational biology and bioinformatics. Recent advances in genomics and sequencing technologies demand faster and scalable algorithms that can cope with the ever-increasing sequence lengths. Classical pairwise alignment algorithms based on dynamic programming are strongly limited by quadratic requirements in time and memory. The recently proposed wavefront alignment algorithm (WFA) introduced an efficient algorithm to perform exact gap-affine alignment in O(ns) time, where s is the optimal score and n is the sequence length. Notwithstanding these bounds, WFA’s O(s2) memory requirements become computationally impractical for genome-scale alignments, leading to a need for further improvement. ResultsIn this article, we present the bidirectional WFA algorithm, the first gap-affine algorithm capable of computing optimal alignments in O(s) memory while retaining WFA’s time complexity of O(ns). As a result, this work improves the lowest known memory bound O(n) to compute gap-affine alignments. In practice, our implementation never requires more than a few hundred MBs aligning noisy Oxford Nanopore Technologies reads up to 1 Mbp long while maintaining competitive execution times. Availability and implementationAll code is publicly available at https://github.com/smarco/BiWFA-paper. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  3. Alkan, Can (Ed.)
    Abstract SummaryGenome-centric analysis of metagenomic samples is a powerful method for understanding the function of microbial communities. Calculating read coverage is a central part of analysis, enabling differential coverage binning for recovery of genomes and estimation of microbial community composition. Coverage is determined by processing read alignments to reference sequences of either contigs or genomes. Per-reference coverage is typically calculated in an ad-hoc manner, with each software package providing its own implementation and specific definition of coverage. Here we present a unified software package CoverM which calculates several coverage statistics for contigs and genomes in an ergonomic and flexible manner. It uses “Mosdepth arrays” for computational efficiency and avoids unnecessary I/O overhead by calculating coverage statistics from streamed read alignment results. Availability and implementationCoverM is free software available at https://github.com/wwood/coverm. CoverM is implemented in Rust, with Python (https://github.com/apcamargo/pycoverm) and Julia (https://github.com/JuliaBinaryWrappers/CoverM_jll.jl) interfaces. 
    more » « less
  4. Abstract MotivationWhole-genome alignment is an important problem in genomics for comparing different species, mapping draft assemblies to reference genomes and identifying repeats. However, for large plant and animal genomes, this task remains compute and memory intensive. In addition, current practical methods lack any guarantee on the characteristics of output alignments, thus making them hard to tune for different application requirements. ResultsWe introduce an approximate algorithm for computing local alignment boundaries between long DNA sequences. Given a minimum alignment length and an identity threshold, our algorithm computes the desired alignment boundaries and identity estimates using kmer-based statistics, and maintains sufficient probabilistic guarantees on the output sensitivity. Further, to prioritize higher scoring alignment intervals, we develop a plane-sweep based filtering technique which is theoretically optimal and practically efficient. Implementation of these ideas resulted in a fast and accurate assembly-to-genome and genome-to-genome mapper. As a result, we were able to map an error-corrected whole-genome NA12878 human assembly to the hg38 human reference genome in about 1 min total execution time and <4 GB memory using eight CPU threads, achieving significant improvement in memory-usage over competing methods. Recall accuracy of computed alignment boundaries was consistently found to be >97% on multiple datasets. Finally, we performed a sensitive self-alignment of the human genome to compute all duplications of length ≥1 Kbp and ≥90% identity. The reported output achieves good recall and covers twice the number of bases than the current UCSC browser’s segmental duplication annotation. Availability and implementationhttps://github.com/marbl/MashMap 
    more » « less
  5. Abstract Alignments of multiple genomes are a cornerstone of comparative genomics, but generating these alignments remains technically challenging and often impractical. We developed themsa_pipelineworkflow (https://bitbucket.org/bucklerlab/msa_pipeline) to allow practical and sensitive multiple alignment of diverged plant genomes and calculation of conservation scores with minimal user inputs. As high repeat content and genomic divergence are substantial challenges in plant genome alignment, we also explored the effect of different masking approaches and parameters of the LAST aligner using genome assemblies of 33 grass species. Compared with conventional masking with RepeatMasker, a masking approach based onk‐mers (nucleotide sequences ofklength) increased the alignment rate of coding sequence and noncoding functional regions by 25 and 14%, respectively. We further found that default alignment parameters generally perform well, but parameter tuning can increase the alignment rate for noncoding functional regions by over 52% compared with default LAST settings. Finally, by increasing alignment sensitivity from the default baseline, parameter tuning can increase the number of noncoding sites that can be scored for conservation by over 76%. Overall, tuning of masking and alignment parameters can generate optimized multiple alignments to drive biological discovery in plants. 
    more » « less