Offline policy optimization could have a large impact on many real-world decision-making problems, as online learning may be infeasible in many applications. Importance sampling and its variants are a commonly used type of estimator in offline policy evaluation, and such estimators typically do not require assumptions on the properties and representational capabilities of value function or decision process model function classes. In this paper, we identify an important overfitting phenomenon in optimizing the importance weighted return, in which it may be possible for the learned policy to essentially avoid making aligned decisions for part of the initial state space. We propose an algorithm to avoid this overfitting through a new per-state-neighborhood normalization constraint, and provide a theoretical justification of the proposed algorithm. We also show the limitations of previous attempts to this approach. We test our algorithm in a healthcare-inspired simulator, a logged dataset collected from real hospitals and continuous control tasks. These experiments show the proposed method yields less overfitting and better test performance compared to state-of-the-art batch reinforcement learning algorithms.
more »
« less
This content will become publicly available on December 10, 2025
Accelerating process control and optimization via machine learning: a review
Abstract Process control and optimization have been widely used to solve decision-making problems in chemical engineering applications. However, identifying and tuning the best solution algorithm is challenging and time-consuming. Machine learning tools can be used to automate these steps by learning the behavior of a numerical solver from data. In this paper, we discuss recent advances in (i) the representation of decision-making problems for machine learning tasks, (ii) algorithm selection, and (iii) algorithm configuration for monolithic and decomposition-based algorithms. Finally, we discuss open problems related to the application of machine learning for accelerating process optimization and control.
more »
« less
- Award ID(s):
- 2313289
- PAR ID:
- 10635953
- Publisher / Repository:
- de Gruyter
- Date Published:
- Journal Name:
- Reviews in Chemical Engineering
- Volume:
- 41
- Issue:
- 4
- ISSN:
- 0167-8299
- Page Range / eLocation ID:
- 401 to 418
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We study the problem of learning sequential decision-making policies in settings with multiple state-action representations. Such settings naturally arise in many domains, such as planning (e.g., multiple integer programming formulations) and various combinatorial optimization problems (e.g., those with both integer programming and graph-based formulations). Inspired by the classical co-training framework for classification, we study the problem of co-training for policy learning. We present sufficient conditions under which learning from two views can improve upon learning from a single view alone. Motivated by these theoretical insights, we present a meta-algorithm for co-training for sequential decision making. Our framework is compatible with both reinforcement learning and imitation learning. We validate the effectiveness of our approach across a wide range of tasks, including discrete/continuous control and combinatorial optimization.more » « less
-
Adams, RP; Gogate V (Ed.)We study the problem of learning sequential decision-making policies in settings with multiple state-action representations. Such settings naturally arise in many domains, such as planning (e.g., multiple integer programming formulations) and various combinatorial optimization problems (e.g., those with both integer programming and graph-based formulations). Inspired by the classical co-training framework for classification, we study the problem of co-training for policy learning. We present sufficient conditions under which learning from two views can improve upon learning from a single view alone. Motivated by these theoretical insights, we present a meta-algorithm for co-training for sequential decision making. Our framework is compatible with both reinforcement learning and imitation learning. We validate the effectiveness of our approach across a wide range of tasks, including discrete/continuous control and combinatorial optimization.more » « less
-
Identifying cause-effect relations among variables is a key step in the decision-making process. Whereas causal inference requires randomized experiments, researchers and policy makers are increasingly using observational studies to test causal hypotheses due to the wide availability of data and the infeasibility of experiments. The matching method is the most used technique to make causal inference from observational data. However, the pair assignment process in one-to-one matching creates uncertainty in the inference because of different choices made by the experimenter. Recently, discrete optimization models have been proposed to tackle such uncertainty; however, they produce 0-1 nonlinear problems and lack scalability. In this work, we investigate this emerging data science problem and develop a unique computational framework to solve the robust causal inference test instances from observational data with continuous outcomes. In the proposed framework, we first reformulate the nonlinear binary optimization problems as feasibility problems. By leveraging the structure of the feasibility formulation, we develop greedy schemes that are efficient in solving robust test problems. In many cases, the proposed algorithms achieve a globally optimal solution. We perform experiments on real-world data sets to demonstrate the effectiveness of the proposed algorithms and compare our results with the state-of-the-art solver. Our experiments show that the proposed algorithms significantly outperform the exact method in terms of computation time while achieving the same conclusion for causal tests. Both numerical experiments and complexity analysis demonstrate that the proposed algorithms ensure the scalability required for harnessing the power of big data in the decision-making process. Finally, the proposed framework not only facilitates robust decision making through big-data causal inference, but it can also be utilized in developing efficient algorithms for other nonlinear optimization problems such as quadratic assignment problems. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This work was supported by the Division of Civil, Mechanical and Manufacturing Innovation of the National Science Foundation [Grant 2047094]. Supplemental Material: The online supplements are available at https://doi.org/10.1287/ijoc.2022.1226 .more » « less
-
Decision-focused learning (DFL) is an emerging paradigm that integrates machine learning (ML) and constrained optimization to enhance decision quality by training ML models in an end-to-end system. This approach shows significant potential to revolutionize combinatorial decision-making in real-world applications that operate under uncertainty, where estimating unknown parameters within decision models is a major challenge. This paper presents a comprehensive review of DFL, providing an in-depth analysis of both gradient-based and gradient-free techniques used to combine ML and constrained optimization. It evaluates the strengths and limitations of these techniques and includes an extensive empirical evaluation of eleven methods across seven problems. The survey also offers insights into recent advancements and future research directions in DFL.more » « less
An official website of the United States government
