skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 3, 2026

Title: Developmental changes in epidermal anatomy, drought tolerance, and biomechanics in the leaves of a tropical fern
Throughout leaf development, cell expansion is dynamic and driven by the balance between local cell wall mechanical properties and the intracellular turgor pressure that overcomes the stiffness of the cell wall leading to plastic deformation. The epidermal pavement cells in most leaves begin development as small, polygonally shaped cells, but in mature leaves epidermal pavement cells are often shaped as highly lobed puzzle pieces. However, the developmental and biomechanical trajectories between these two end points have not before been fully characterized. Here we characterized how epidermal pavement cell size and shape, cell wall thickness, and hydraulic traits change during leaf expansion in the tropical understory fern Microsorum grossum (Polypodiaceae). As fronds expanded by approximately two orders of magnitude in size, epidermal pavement cells became increasingly lobed as cell walls thickened. Furthermore, the timing of these developmental changes varied across the lamina, start first near the frond base and midrib, followed by more apical and lateral regions. During expansion, fronds also underwent substantial physiological changes: as cells expanded and cell walls thickened, intracellular turgor pressure and the bulk cell wall modulus of elasticity both increased while the water potential at turgor loss and the minimum epidermal conductance to water vapor both decreased. These results highlight the dynamic coordination between anatomical and physiological traits throughout leaf development, provide valuable data for biophysical modeling of leaf development, and highlight the vulnerability of developing leaves to drought conditions.  more » « less
Award ID(s):
2243971 2532425
PAR ID:
10636073
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Annals of Botany
ISSN:
0305-7364
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mechanical properties, size and geometry of cells, and internal turgor pressure greatly influence cell morphogenesis. Computational models of cell growth require values for wall elastic modulus and turgor pressure, but very few experiments have been designed to validate the results using measurements that deform the entire thickness of the cell wall. New wall material is synthesized at the inner surface of the cell such that full-thickness deformations are needed to quantify relevant changes associated with cell development. Here, we present an integrated, experimental–computational approach to analyze quantitatively the variation of elastic bending behavior in the primary cell wall of living Arabidopsis (Arabidopsis thaliana) pavement cells and to measure turgor pressure within cells under different osmotic conditions. This approach used laser scanning confocal microscopy to measure the 3D geometry of single pavement cells and indentation experiments to probe the local mechanical responses across the periclinal wall. The experimental results were matched iteratively using a finite element model of the experiment to determine the local mechanical properties and turgor pressure. The resulting modulus distribution along the periclinal wall was nonuniform across the leaf cells studied. These results were consistent with the characteristics of plant cell walls which have a heterogeneous organization. The results and model allowed the magnitude and orientation of cell wall stress to be predicted quantitatively. The methods also serve as a reference for future work to analyze the morphogenetic behaviors of plant cells in terms of the heterogeneity and anisotropy of cell walls. 
    more » « less
  2. One of the central problems in animal and plant developmental biology is deciphering how chemical and mechanical signals interact within a tissue to produce organs of defined size, shape, and function. Cell walls in plants impose a unique constraint on cell expansion since cells are under turgor pressure and do not move relative to one another. Cell wall extensibility and constantly changing distribution of stress on the wall are mechanical properties that vary between individual cells and contribute to rates of expansion and orientation of cell division. How exactly cell wall mechanical properties influence cell behavior is still largely unknown. To address this problem, a novel, subcellular element computational model of growth of stem cells within the multilayered shoot apical meristem (SAM) of Arabidopsis thaliana is developed and calibrated using experimental data. Novel features of the model include separate, detailed descriptions of cell wall extensibility and mechanical stiffness, deformation of the middle lamella, and increase in cytoplasmic pressure generating internal turgor pressure. The model is used to test novel hypothesized mechanisms of formation of the shape and structure of the growing, multilayeredSAMbased onWUSconcentration of individual cells controlling cell growth rates and layer-dependent anisotropic mechanical properties of subcellular components of individual cells determining anisotropic cell expansion directions. Model simulations also provide a detailed prediction of distribution of stresses in the growing tissue which can be tested in future experiments. 
    more » « less
  3. null (Ed.)
    Abstract Plant cell deformations are driven by cell pressurization and mechanical constraints imposed by the nanoscale architecture of the cell wall, but how these factors are controlled at the genetic and molecular levels to achieve different types of cell deformation is unclear. Here, we used stomatal guard cells to investigate the influences of wall mechanics and turgor pressure on cell deformation and demonstrate that the expression of the pectin-modifying gene PECTATE LYASE LIKE12 (PLL12) is required for normal stomatal dynamics in Arabidopsis thaliana. Using nanoindentation and finite element modeling to simultaneously measure wall modulus and turgor pressure, we found that both values undergo dynamic changes during induced stomatal opening and closure. PLL12 is required for guard cells to maintain normal wall modulus and turgor pressure during stomatal responses to light and to tune the levels of calcium cross-linked pectin in guard cell walls. Guard cell-specific knockdown of PLL12 caused defects in stomatal responses and reduced leaf growth, which were associated with lower cell proliferation but normal cell expansion. Together, these results force us to revise our view of how wall-modifying genes modulate wall mechanics and cell pressurization to accomplish the dynamic cellular deformations that underlie stomatal function and tissue growth in plants. 
    more » « less
  4. Summary Mature leaf area (LA) is a showcase of diversity – varying enormously within and across species, and associated with the productivity and distribution of plants and ecosystems. Yet, it remains unclear how developmental processes determine variation in LA.We introduce a mathematical framework pinpointing the origin of variation in LA by quantifying six epidermal ‘developmental traits’: initial mean cell size and number (approximating values within the leaf primordium), and the maximum relative rates and durations of cell proliferation and expansion until leaf maturity. We analyzed a novel database of developmental trajectories of LA and epidermal anatomy, representing 12 eudicotyledonous species and 52 Arabidopsis experiments.Within and across species, mean primordium cell number and maximum relative cell proliferation rate were the strongest developmental determinants of LA. Trade‐offs between developmental traits, consistent with evolutionary and metabolic scaling theory, strongly constrain LA variation. These include trade‐offs between primordium cell number vs cell proliferation, primordium mean cell size vs cell expansion, and the durations vs maximum relative rates of cell proliferation and expansion. Mutant and wild‐type comparisons showed these trade‐offs have a genetic basis in Arabidopsis.Analyses of developmental traits underlying LA and its diversification highlight mechanisms for leaf evolution, and opportunities for breeding trait shifts. 
    more » « less
  5. SUMMARY Stomata are pores at the leaf surface that enable gas exchange and transpiration. The signaling pathways that regulate the differentiation of stomatal guard cells and the mechanisms of stomatal pore formation have been characterized inArabidopsis thaliana. However, the process by which stomatal complexes develop after pore formation into fully mature complexes is poorly understood. We tracked the morphogenesis of young stomatal complexes over time to establish characteristic geometric milestones along the path of stomatal maturation. Using 3D‐nanoindentation coupled with finite element modeling of young and mature stomata, we found that despite having thicker cell walls than young guard cells, mature guard cells are more energy efficient with respect to stomatal opening, potentially attributable to the increased mechanical anisotropy of their cell walls and smaller changes in turgor pressure between the closed and open states. Comparing geometric changes in young and mature guard cells of wild‐type and cellulose‐deficient plants revealed that although cellulose is required for normal stomatal maturation, mechanical anisotropy appears to be achieved by the collective influence of cellulose and additional wall components. Together, these data elucidate the dynamic geometric and biomechanical mechanisms underlying the development process of stomatal maturation. 
    more » « less