skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: Identifying fracture location in additively manufactured samples based on defect characteristics: Demonstration using AlSi10Mg
A new metric was developed to quantify the impact of surface-connected defects and internal pores of different morphologies, namely irregular lack of fusion (LoF) pores and spherical keyhole pores, on the mechanical properties and fracture location of AlSi10Mg tensile samples fabricated using laser powder bed fusion additive manufacturing. As defect volume alone has been shown to be insufficient to predict fracture location, the proposed defect impact metric (DIM) incorporates contributions from additional defect features, including proximity to the surface, interaction with neighboring defects, morphology, and reduction in load-bearing cross-sectional area to better assess a defect’s propensity for corresponding to fracture location. The fracture location of keyhole samples was captured by large surface-connected defects with numerous neighboring defects and resulted in increased losses in load-bearing area. In contrast, LoF samples fractured at regions with either large surface-connected defects or large internal pores with many defects in close proximity, high curvatures, and large projected areas. The proposed DIM outperformed existing defect-based frameworks in identifying fracture locations in both LoF and keyhole samples by incorporating surface roughness, defect projected area, and interactions between defects based on distance, volume, and configuration. Additionally, the maximum DIM value within the fracture range was more strongly correlated to strength and ductility than porosity or defect size for LoF samples, demonstrating the potential of the DIM to non-destructively assess the effects of defects on mechanical behavior. The broader applicability of the DIM framework was demonstrated in its ability to capture fracture in both PBF-LB AlSi10Mg and Alloy 718.  more » « less
Award ID(s):
1652575
PAR ID:
10636156
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Additive Manufacturing
Volume:
110
Issue:
C
ISSN:
2214-8604
Page Range / eLocation ID:
104935
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Additively manufactured metals often contain pores, which limit the strength and ductility of resulting components. In this study, a ductile fracture model was developed to describe the effect of pore size, in terms of absolute and relative metrics, on fracture strain under uniaxial tension. The model approximates lack of fusion (LoF) pores as penny-shaped cracks, and damage accumulation was based on the J-integral and secondary Q parameter. The model was calibrated with Ti-6Al-4V samples with intentionally introduced pores fabricated by laser powder bed fusion (PBF-LB) additive manufacturing (AM) in as-built and heat-treated conditions. The model captures the experimentally observed size effect, where for a given pore area fraction, larger samples fracture at smaller strains. By identifying the critical pore size for a single, isolated pore for either load or displacement-controlled applications, the model developed in this study is a crucial step to developing a comprehensive fracture model for establishing confidence in the structural capability of pore-containing additively manufactured components. 
    more » « less
  2. Background Porosity and other defects resultant by additive manufacturing processes are well-known to affect mechanical properties. However, there remains limited understanding regarding how the internal defect structure influences the evolution of the local strain field, as experimental investigations have not presented direct measurements of the evolving internal strain field in the presence of defects. Objective Interrupted in-situ tensile tests in a lab-based X-ray computed tomography machine were used to investigate the evolution of the strain field around internal defects. The evolution of the internal strain field facilitated examination of the role of specific defects in the macroscopic deformation of additively manufactured tensile coupons. Methods Samples were produced in 316L stainless steel by laser powder bed fusion. An in situ loading device was utilized to subject the samples to tensile failure within a tomographic scanning environment. Digital volume correlation was utilized to directly determine local strain levels within the additively manufactured components in the vicinity of porosity defects. Results Effects of porosity on strain localization and eventual failure of the samples were evaluated. Characteristics of the porosity distribution, including presence of porosity at the surface or near-surface of components, as well as the proximity of pores to each other were found to influence the evolution of failure. Early onset of failure was found to be associated with the availability of neighboring porosity that allowed for rapid progression of the fracture path. Conclusions The direct measurements of strain field evolution in the present study established understanding regarding how internal defect structure characteristics influence the evolution of the local strain field for additively manufactured components. This high fidelity characterization and the associated phenomenological observations have bearing for supporting validation of numerical modeling frameworks for describing failure in these materials. 
    more » « less
  3. Electron Beam Melting (EBM) is a widespread additive manufacturing technology for metallic-part fabrication; however, final products can contain microstructural defects that reduce fatigue performance. While the effects of gas and keyhole pores are well characterized, other defects, including lack of fusion and smooth facets, warrant additional investigation given their potential to significantly impact fatigue life. Therefore, such defects were intentionally induced into EBM Ti-6Al-4V, a prevalent titanium alloy, to investigate their degradation on stress-controlled fatigue life. The focus offset processing parameter was varied outside of typical manufacturing settings to generate a variety of defect types, and specimens were tested under fatigue loading, followed by surface and microstructure characterization. Fatigue damage primarily initiated at smooth facet sites or sites consisting of un-melted powder due to a lack of fusion, and an increase in both fatigue life and void content with increasing focus offset was noted. This counter-intuitive relationship is attributed to lower focus offsets producing a microstructure more prone to smooth facets, discussed in the literature as being due to lack of fusion or cleavage fracture, and this study indicates that these smooth flaws are most likely a result of lack of fusion. 
    more » « less
  4. Three typical types of defects, i.e., keyholes, lack of fusion (LoF), and gas-entrapped pores (GEP), characterized by various features (e.g., volume, surface area, etc.), are generated under different process parameters of laser beam powder bed fusion (L-PBF) processes in additive manufacturing (AM). The different types of defects deteriorate the mechanical performance of L- PBF components, such as fatigue life, to a different extent. However, there is a lack of recognized approaches to classify the defects automatically and accurately in L-PBF components. This work presents a novel hierarchical graph convolutional network (H-GCN) to classify different types of defects by a cascading GCN structure with a low-level feature (e.g., defect features) layer and a high-level feature (e.g., process parameters) layer. Such an H-GCN not only leverages the multi- level information from process parameters and defect features to classify the defects but also explores the impact of process parameters on defect types and features. The H-GCN is evaluated through a case study with X-ray computed tomography (CT) L-PBF defect datasets and compared with several machine learning methods. H-GCN exhibits an outstanding classification performance with an F1-score of 1.000 and reveals the potential effect of process parameters on three types of defects. 
    more » « less
  5. Background To ensure reliability of additively manufactured components in structural applications, an understanding of the combined behavior of pores and stress state on failure behavior is required. Objective This research aims to identify the capabilities and limitations of stress- and strain-based fracture models in describing failure in complex additively manufactured structures. Methods SS316L brackets with a three-dimensional truss-based geometry, in which stress state and pore size varied among struts, were fabricated with laser powder bed fusion. Fracture models considering both stress state and pore size, formulated in terms of stress (pore-size dependent Mohr–Coulomb, or P-MC) and strain (pore-size dependent Modified Mohr–Coulomb, or P-MMC), were calibrated and used to predict the fracture behavior of the brackets. Results The P-MMC fracture model correctly predicted the experimentally observed fracture locations for 11 out of 12 samples, while the P-MC fracture model correctly predicted 10 out of 12 samples. Below a critical pore size, stress state effects dominated the fracture behavior, and above this, pore size was the critical factor, where capturing both factors was crucial at intermediate pore sizes. Conclusions The P-MC fracture model was appropriate for predicting the maximum load-bearing capacity for all samples in this study, while the P-MMC fracture model was shown to be only applicable for samples containing small pores. The importance of incorporating both stress state and the presence of pores in a fracture model is necessary to ensure confidence in the load carrying capacity of additively manufactured structures. 
    more » « less