skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 7, 2026

Title: Revealing the nature of the second branch point in the catalytic mechanism of the Fe( ii )/2OG-dependent ethylene forming enzyme
The study explores the second branchpoint of the EFE catalytic mechanism, which determines the product distribution of ethylene and 3-hydroxypropionate formation using QM/MM simulations on WT and A198L variants of EFE.  more » « less
Award ID(s):
2203630
PAR ID:
10636250
Author(s) / Creator(s):
; ;
Corporate Creator(s):
Editor(s):
na
Publisher / Repository:
ACS
Date Published:
Journal Name:
Chemical Science
Volume:
16
Issue:
18
ISSN:
2041-6520
Page Range / eLocation ID:
7667 to 7684
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The non-heme Fe( ii ) and 2-oxoglutarate (2OG) dependent ethylene-forming enzyme (EFE) catalyzes both ethylene generation and l -Arg hydroxylation. Despite experimental and computational progress in understanding the mechanism of EFE, no EFE variant has been optimized for ethylene production while simultaneously reducing the l -Arg hydroxylation activity. In this study, we show that the two l -Arg binding conformations, associated with different reactivity preferences in EFE, lead to differences in the intrinsic electric field (IntEF) of EFE. Importantly, we suggest that applying an external electric field (ExtEF) along the Fe–O bond in the EFE·Fe( iii )·OO − ˙·2OG· l -Arg complex can switch the EFE reactivity between l -Arg hydroxylation and ethylene generation. Furthermore, we explored how applying an ExtEF alters the geometry, electronic structure of the key reaction intermediates, and the individual energy contributions of second coordination sphere (SCS) residues through combined quantum mechanics/molecular mechanics (QM/MM) calculations. Experimentally generated variant forms of EFE with alanine substituted for SCS residues responsible for stabilizing the key intermediates in the two reactions of EFE led to changes in enzyme activity, thus demonstrating the key role of these residues. Overall, the results of applying an ExtEF indicate that making the IntEF of EFE less negative and stabilizing the off-line binding of 2OG is predicted to increase ethylene generation while reducing l -Arg hydroxylation. 
    more » « less
  2. We examine the claimed observations of a gravitational external field effect (EFE) reported by Chae et al. We show that observations suggestive of the EFE can be interpreted without violating Einstein’s equivalence principle, namely from known correlations between the morphology, the environment, and dynamics of galaxies. While Chae et al.’s analysis provides a valuable attempt at a clear test of modified Newtonian dynamics, an evidently important topic, a re-analysis of the observational data does not permit us to confidently assess the presence of an EFE or to distinguish this interpretation from that proposed in this article. 
    more » « less
  3. Ethylene formation by the ethylene-forming enzyme (EFE) and 1-aminocyclopropane-1-carboxylate oxidase (ACCO). 
    more » « less
  4. Abstract This study investigates dioxygen binding and 2‐oxoglutarate (2OG) coordination by two model non‐heme FeII/2OG enzymes: a class 7 histone demethylase (PHF8) that catalyzes the hydroxylation of its H3K9me2 histone substrate leading to demethylation reactivity and the ethylene‐forming enzyme (EFE), which catalyzes two competing reactions of ethylene generation and substratel‐Arg hydroxylation. Although both enzymes initially bind 2OG by using anoff‐line2OG coordination mode, in PHF8, the substrate oxidation requires a transition to anin‐linemode, whereas EFE is catalytically productive for ethylene production from 2OG in theoff‐linemode. We used classical molecular dynamics (MD), quantum mechanics/molecular mechanics (QM/MM) MD and QM/MM metadynamics (QM/MM‐MetD) simulations to reveal that it is the dioxygen binding process and, ultimately, the protein environment that control the formation of thein‐lineFeIII‐OO⋅intermediate in PHF8 and theoff‐lineFeIII‐OO⋅intermediate in EFE. 
    more » « less
  5. Abstract The femora of diapsids have undergone morphological changes related to shifts in postural and locomotor modes, such as the transition from plesiomorphic amniote and diapsid taxa to the apomorphic conditions related to a more erect posture within Archosauriformes. One remarkable clade of Triassic diapsids is the chameleon‐like Drepanosauromorpha. This group is known from numerous articulated but heavily compressed skeletons that have the potential to further inform early reptile femoral evolution. For the first time, we describe the three‐dimensional osteology of the femora of Drepanosauromorpha, based on undistorted fossils from the Upper Triassic Chinle Formation and Dockum Group of North America. We identify apomorphies and a combination of character states that link these femora to those in crushed specimens of drepanosauromorphs and compare our sample with a range of amniote taxa. Several characteristics of drepanosauromorph femora, including a hemispherical proximal articular surface, prominent asymmetry in the proximodistal length of the tibial condyles, and a deep intercondylar sulcus, are plesiomorphies shared with early diapsids. The femora contrast with those of most diapsids in lacking a crest‐like, distally tapering internal trochanter. They bear a ventrolaterally positioned tuberosity on the femoral shaft, resembling the fourth trochanter in Archosauriformes. The reduction of an internal trochanter parallels independent reductions in therapsids and archosauriforms. The presence of a ventrolaterally positioned trochanter is also similar to that of chameleonid squamates. Collectively, these features demonstrate a unique femoral morphology for drepanosauromorphs, and suggest an increased capacity for femoral adduction and protraction relative to most other Permo‐Triassic diapsids. 
    more » « less