Aims.We investigate the physical properties and redshift evolution of simulated galaxies residing in unvirialized cosmic structures (i.e., protoclusters) at cosmic noon, to understand the influence of the environment on galaxy formation. This work is intended to build clear expectations for the ongoing ODIN (One-hundred-deg2DECam Imaging in Narrowbands) survey, which is mapping large-scale structures atz= 2.4,3.1, and 4.5 using Lyα-emitting galaxies (LAEs) as tracers. Methods.From the IllustrisTNG simulations, we define subregions centered on the most massive clusters ranked by total stellar mass atz= 0 and study the properties of galaxies within, including those of LAEs. To model the LAE population, we take a semi-analytical approach that assigns Lyαluminosity and equivalent width based on the UV luminosities to galaxies in a probabilistic manner. We investigate stellar mass, star formation rate (SFR), major merger events, and specific star formation rate of the population of star-forming galaxies and LAEs in the field- and protocluster environment and trace their evolution across cosmic time betweenz= 0−4. Results.We find that the overall shape of the UV luminosity function in simulated protocluster environments is characterized by a substantially shallower faint-end slope and a large excess on the bright end, signaling different formation histories for galaxies therein. The difference is milder for the Lyαluminosity function. While protocluster galaxies follow the same SFR-M★scaling relation as average field galaxies, a larger fraction appears to have experienced major mergers in the last 200 Myr and as a result shows enhanced star formation at a ≈60% level, leading to a flatter distribution in both SFR and M★relative to galaxies in the average field. We find that protocluster galaxies, including LAEs, begin to quench much earlier (z∼0.8−1.6) than field galaxies (z∼0.5−0.9); our result is in qualitative agreement with recent observational results and highlights the importance of large-scale environment on the overall formation history of galaxies. 
                        more » 
                        « less   
                    This content will become publicly available on June 4, 2026
                            
                            ODIN: Star Formation Histories Reveal Formative Starbursts Experienced by Ly α -emitting Galaxies at Cosmic Noon
                        
                    
    
            Abstract In this work, we test the frequent assumption that Lyα-emitting galaxies (LAEs) are experiencing their first major burst of star formation at the time of observation. To this end, we identify 74 LAEs from the ODIN Survey with rest-UV-through-NIR photometry from UVCANDELS. For each LAE, we perform nonparametric star formation history (SFH) reconstruction using the Dense Basis Gaussian-process-based method of spectral energy distribution fitting. We find that a strong majority (67%) of our LAE SFHs align with the frequently assumed archetype of a first major star formation burst, with at most modest star formation rates (SFRs) in the past. However, the rest of our LAE SFHs have significant amounts of star formation in the past, with 28% exhibiting earlier bursts of star formation, with the ongoing burst having the highest SFR (dominant bursts) and the final 5% having experienced their highest SFR in the past (nondominant bursts). Combining the SFHs indicating first and dominant bursts, ∼95% of LAEs are experiencing their largest burst yet: a formative burst. We also find that the fraction of total stellar mass created in the last 200 Myr is ∼1.3 times higher in LAEs than in mass-matched Lyman break galaxy (LBG) samples, and that a majority of LBGs are experiencing dominant bursts, reaffirming that LAEs differ from other star-forming galaxies. Overall, our results suggest that multiple evolutionary paths can produce galaxies with strong observed Lyαemission. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10636301
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 986
- Issue:
- 1
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We investigate the effects of stellar populations and sizes on Lyαescape in 27 spectroscopically confirmed and 35 photometric Lyαemitters (LAEs) atz≈ 2.65 in seven fields of the Boötes region of the NOAO Deep Wide-Field Survey. We use deep HST/WFC3 imaging to supplement ground-based observations and infer key galaxy properties. Compared to typical star-forming galaxies (SFGs) at similar redshifts, the LAEs are less massive (M⋆≈ 107–109M⊙), younger (ages ≲1 Gyr), smaller (re< 1 kpc), and less dust-attenuated (E(B−V) ≤ 0.26 mag) but have comparable star formation rates (SFRs ≈ 1–100M⊙yr−1). Some of the LAEs in the sample may be very young galaxies having low nebular metallicities (Zneb≲ 0.2Z⊙) and/or high ionization parameters ( ). Motivated by previous studies, we examine the effects of the concentration of star formation and gravitational potential on Lyαescape by computing SFR surface density, ΣSFR, and specific SFR surface density, ΣsSFR. For a given ΣSFR, the Lyαescape fraction is higher for LAEs with lower stellar masses. The LAEs have a higher ΣsSFR, on average, compared to SFGs. Our results suggest that compact star formation in a low gravitational potential yields conditions amenable to the escape of Lyαphotons. These results have important implications for the physics of Lyαradiative transfer and for the type of galaxies that may contribute significantly to cosmic reionization.more » « less
- 
            Abstract Lyman-alpha-emitting galaxies (LAEs) are typically young, low-mass, star-forming galaxies with little extinction from interstellar dust. Their low dust attenuation allows their Lyαemission to shine brightly in spectroscopic and photometric observations, providing an observational window into the high-redshift Universe. Narrowband surveys reveal large, uniform samples of LAEs at specific redshifts that probe large-scale structure and the temporal evolution of galaxy properties. The One-hundred-deg2DECam Imaging in Narrowbands (ODIN) utilizes three custom-made narrowband filters on the Dark Energy Camera (DECam) to discover LAEs at three equally spaced periods in cosmological history. In this paper, we introduce the hybrid-weighted double-broadband continuum estimation technique, which yields improved estimation of Lyαequivalent widths. Using this method, we discover 6032, 5691, and 4066 LAE candidates atz= 2.4, 3.1, and 4.5 in the extended COSMOS field (∼9 deg2). We find that [Oii] emitters are a minimal contaminant in our LAE samples, but that interloping Green Pea–like [Oiii] emitters are important for our redshift 4.5 sample. We introduce an innovative method for identifying [Oii] and [Oiii] emitters via a combination of narrowband excess and galaxy colors, enabling their study as separate classes of objects. We present scaled median stacked spectral energy distributions for each galaxy sample, revealing the overall success of our selection methods. We also calculate rest-frame Lyαequivalent widths for our LAE samples and find that the EW distributions are best fit by exponential functions with scale lengths ofw0= 53 ± 1, 65 ± 1, and 59 ± 1 Å, respectively.more » « less
- 
            Abstract We present the Texas Euclid Survey for Lyα(TESLA), a spectroscopic survey in the 10 deg2of the Euclid North Ecliptic Pole (NEP) field. Using TESLA, we study how the physical properties of Lyαemitters (LAEs) correlate with Lyαemission to understand the escape of Lyαemission from galaxies at redshifts of 2–3.5. We present an analysis of 43 LAEs performed in the NEP field using early data from the TESLA survey. We use Subaru Hyper Suprime-Cam imaging in thegrizybands, Spitzer/IRAC channels 1 and 2 from the Hawaii 20 deg2(H20) survey, and spectra acquired by the Visible Integral-Field Replicable Unit Spectrograph (VIRUS) on the Hobby–Eberly Telescope. We perform spectral energy distribution (SED) fitting to compute the galaxy properties of 43 LAEs, and study correlations between stellar mass, star formation rate (SFR), and dust to the Lyαrest-frame equivalent width (WLyα). We uncover marginal (1σsignificance) correlations between stellar mass andWLyα, and SFR andWLyα, with a Spearman correlation coefficient of −0. and −0. , respectively. We show that theWLyαdistribution of the 43 LAEs is consistent with being drawn from an exponential distribution with an e-folding scale ofW0= 150 Å. Once complete the TESLA survey will enable the study of ≳50,000 LAEs to explore more correlations between galaxy properties andWLyα. The large sample size will allow the construction of a predictive model forWLyαas a function of SED-derived galaxy properties, which could be used to improve Lyα-based constraints on reionization.more » « less
- 
            null (Ed.)ABSTRACT Understanding the rate at which stars form is central to studies of galaxy formation. Observationally, the star formation rates (SFRs) of galaxies are measured using the luminosity in different frequency bands, often under the assumption of a time-steady SFR in the recent past. We use star formation histories (SFHs) extracted from cosmological simulations of star-forming galaxies from the FIRE project to analyse the time-scales to which the H α and far-ultraviolet (FUV) continuum SFR indicators are sensitive. In these simulations, the SFRs are highly time variable for all galaxies at high redshift, and continue to be bursty to z = 0 in dwarf galaxies. When FIRE SFHs are partitioned into their bursty and time-steady phases, the best-fitting FUV time-scale fluctuates from its ∼10 Myr value when the SFR is time-steady to ≳100 Myr immediately following particularly extreme bursts of star formation during the bursty phase. On the other hand, the best-fitting averaging time-scale for H α is generally insensitive to the SFR variability in the FIRE simulations and remains ∼5 Myr at all times. These time-scales are shorter than the 100 and 10 Myr time-scales sometimes assumed in the literature for FUV and H α, respectively, because while the FUV emission persists for stellar populations older than 100 Myr, the time-dependent luminosities are strongly dominated by younger stars. Our results confirm that the ratio of SFRs inferred using H α versus FUV can be used to probe the burstiness of star formation in galaxies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
