skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 26, 2026

Title: Fragmentation signatures in cancer patients resemble those of patients with vascular or autoimmune diseases
Multiple case-controlled studies have shown that analyzing fragmentation patterns in plasma cell-free DNA (cfDNA) can distinguish individuals with cancer from healthy controls. However, there have been few studies that investigate various types of cfDNA fragmentomics patterns in individuals with other diseases. We therefore developed a comprehensive statistic, called fragmentation signatures, that integrates the distributions of fragment positioning, fragment length, and fragment end-motifs in cfDNA. We found that individuals with venous thromboembolism, systemic lupus erythematosus, dermatomyositis, or scleroderma have cfDNA fragmentation signatures that closely resemble those found in individuals with advanced cancers. Furthermore, these signatures were highly correlated with increases in inflammatory markers in the blood. We demonstrate that these similarities in fragmentation signatures lead to high rates of false positives in individuals with autoimmune or vascular disease when evaluated using conventional binary classification approaches for multicancer earlier detection (MCED). To address this issue, we introduced a multiclass approach for MCED that integrates fragmentation signatures with protein biomarkers and achieves improved specificity in individuals with autoimmune or vascular disease while maintaining high sensitivity. Though these data put substantial limitations on the specificity of fragmentomics-based tests for cancer diagnostics, they also offer ways to improve the interpretability of such tests. Moreover, we expect these results will lead to a better understanding of the process—most likely inflammatory—from which abnormal fragmentation signatures are derived.  more » « less
Award ID(s):
2402234
PAR ID:
10636373
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Corporate Creator(s):
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
122
Issue:
34
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Known genes in the breast cancer study literature could not be confirmed whether they are vital to breast cancer formations due to lack of convincing accuracy, although they may be biologically directly related to breast cancer based on present biological knowledge. It is hoped vital genes can be identified with the highest possible accuracy, for example, 100% accuracy and convincing causal patterns beyond what has been known in breast cancer. One hope is that finding gene-gene interaction signatures and functional effects may solve the puzzle. This research uses a recently developed competing linear factor analysis method in differentially expressed gene detection to advance the study of breast cancer formation. Surprisingly, 3 genes are detected to be differentially expressed in TNBC and non-TNBC (Her2, Luminal A, Luminal B) samples with 100% sensitivity and 100% specificity in 1 study of triple-negative breast cancers (TNBC, with 54 675 genes and 265 samples). These 3 genes show a clear signature pattern of how TNBC patients can be grouped. For another TNBC study (with 54 673 genes and 66 samples), 4 genes bring the same accuracy of 100% sensitivity and 100% specificity. Four genes are found to have the same accuracy of 100% sensitivity and 100% specificity in 1 breast cancer study (with 54 675 genes and 121 samples), and the same 4 genes bring an accuracy of 100% sensitivity and 96.5% specificity in the fourth breast cancer study (with 60 483 genes and 1217 samples). These results show the 4-gene-based classifiers are robust and accurate. The detected genes naturally classify patients into subtypes, for example, 7 subtypes. These findings demonstrate the clearest gene-gene interaction patterns and functional effects with the smallest numbers of genes and the highest accuracy compared with findings reported in the literature. The 4 genes are considered to be essential for breast cancer studies and practice. They can provide focused, targeted researches and precision medicine for each subtype of breast cancer. New breast cancer disease types may be detected using the classified subtypes, and hence new effective therapies can be developed. 
    more » « less
  2. The population dynamics of the human microbiome have been associated with inflammatory bowel disease, cancer, obesity, autoimmune diseases, and many other human disease states. An emerging paradigm in treatment is the administration of live engineered organisms, also called next-generation probiotics. However, the efficacy of these microbial therapies can be limited by the organism's overall performance in the harsh and nutrient-limited environment of the gut. In this review, we summarize the current state of the art use of bacterial and yeast strains as probiotics, highlight the recent development of genetic tools for engineering new therapeutic functions in these organisms, and report on the latest therapeutic applications of engineered probiotics, including recent clinical trials. We also discuss the supplementation of prebiotics as a method of manipulating the microbiome and improving the overall performance of engineered live biotherapeutics. 
    more » « less
  3. Background: Type 1 diabetes (T1D) is a devastating disease with serious health complications. Early T1D biomarkers that could enable timely detection and prevention before the onset of clinical symptoms are paramount but currently unavailable. Despite their promise, omics approaches have so far failed to deliver such biomarkers, likely due to the fragmented nature of information obtained through the single omics approach. We recently demonstrated the utility of parallel multi-omics for the identification of T1D biomarker signatures. Our studies also identified challenges. Methods: Here, we evaluated a novel computational approach of data imputation and amplification as one way to overcome challenges associated with the relatively small number of subjects in these studies. Results: Using proprietary algorithms, we amplified our quadra-omics (proteomics, metabolomics, lipidomics, and transcriptomics) dataset from nine subjects a thousand-fold and analyzed the data using Ingenuity Pathway Analysis (IPA) software to assess the change in its analytical capabilities and biomarker prediction power in the amplified datasets compared to the original. These studies showed the ability to identify an increased number of T1D-relevant pathways and biomarkers in such computationally amplified datasets, especially, at imputation ratios close to the “golden ratio” of 38.2%:61.8%. Specifically, the Canonical Pathway and Diseases and Functions modules identified higher numbers of inflammatory pathways and functions relevant to autoimmune T1D, including novel ones not identified in the original data. The Biomarker Prediction module also predicted in the amplified data several unique biomarker candidates with direct links to T1D pathogenesis. Conclusions: These preliminary findings indicate that such large-scale data imputation and amplification approaches are useful in facilitating the discovery of candidate integrated biomarker signatures of T1D or other diseases by increasing the predictive range of existing data mining tools, especially when the size of the input data is inherently limited. 
    more » « less
  4. Arachidonic acid (AA) metabolites have been associated with several diseases across various organ systems, including the cardiovascular, pulmonary, and renal systems. Lipid mediators generated from AA oxidation have been studied to control macrophages, T-cells, cytokines, and fibroblasts, and regulate inflammatory mediators that induce vascular remodeling and dysfunction. AA is metabolized by cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) to generate anti-inflammatory, pro-inflammatory, and pro-resolutory oxidized lipids. As comorbid states such as diabetes, hypertension, and obesity become more prevalent in cardiovascular disease, studying the expression of AA pathway genes and their association with these diseases can provide unique pathophysiological insights. In addition, the AA pathway of oxidized lipids exhibits diverse functions across different organ systems, where a lipid can be both anti-inflammatory and pro-inflammatory depending on the location of metabolic activity. Therefore, we aimed to characterize the gene expression of these lipid enzymes and receptors throughout multi-organ diseases via a transcriptomic meta-analysis using the Gene Expression Omnibus (GEO) Database. In our study, we found that distinct AA pathways were expressed in various comorbid conditions, especially those with prominent inflammatory risk factors. Comorbidities, such as hypertension, diabetes, and obesity appeared to contribute to elevated expression of pro-inflammatory lipid mediator genes. Our results demonstrate that expression of inflammatory AA pathway genes may potentiate and attenuate disease; therefore, we suggest further exploration of these pathways as therapeutic targets to improve outcomes. 
    more » « less
  5. Abstract MotivationAnalysis of time series transcriptomics data from clinical trials is challenging. Such studies usually profile very few time points from several individuals with varying response patterns and dynamics. Current methods for these datasets are mainly based on linear, global orderings using visit times which do not account for the varying response rates and subgroups within a patient cohort. ResultsWe developed a new method that utilizes multi-commodity flow algorithms for trajectory inference in large scale clinical studies. Recovered trajectories satisfy individual-based timing restrictions while integrating data from multiple patients. Testing the method on multiple drug datasets demonstrated an improved performance compared to prior approaches suggested for this task, while identifying novel disease subtypes that correspond to heterogeneous patient response patterns. Availability and implementationThe source code and instructions to download the data have been deposited on GitHub at https://github.com/euxhenh/Truffle. 
    more » « less