Misinformation regarding climate change is a key roadblock in addressing one of the most serious threats to humanity. This paper investigates factual accuracy in large language models (LLMs) regarding climate information. Using true/false labeled Q&A data for fine-tuning and evaluating LLMs on climate-related claims, we compare open-source models, assessing their ability to generate truthful responses to climate change questions. We investigate the detectability of models intentionally poisoned with false climate information, finding that such poisoning may not affect the accuracy of a model’s responses in other domains. Furthermore, we compare the effectiveness of unlearning algorithms, fine-tuning, and Retrieval-Augmented Generation (RAG) for factually grounding LLMs on climate change topics. Our evaluation reveals that unlearning algorithms can be effective for nuanced conceptual claims, despite previous findings suggesting their inefficacy in privacy contexts. These insights aim to guide the development of more factually reliable LLMs and highlight the need for additional work to secure LLMs against misinformation attacks. 
                        more » 
                        « less   
                    This content will become publicly available on July 27, 2026
                            
                            Beyond Factual Accuracy: Evaluating Coverage of Diverse Factual Information in Long-form Text Generation
                        
                    
    
            This paper presents ICAT,1 an evaluation framework for measuring coverage of diverse factual information in long-form text generation. ICAT breaks down a long output text into a list of atomic claims and not only verifies each claim through retrieval from a (reliable) knowledge source, but also computes the alignment between the atomic factual claims and various aspects expected to be presented in the output. We study three implementations of the ICAT framework, each with a different assumption on the availability of aspects and alignment method. By adopting data from the diversification task in the TREC Web Track and the ClueWeb corpus, we evaluate the ICAT framework. We demonstrate strong correlation with human judgments and provide comprehensive evaluation across multiple state-of-the-art LLMs. Our framework further offers interpretable and fine-grained analysis of diversity and coverage. Its modular design allows for easy adaptation to different domains and datasets, making it a valuable tool for evaluating the qualitative aspects of long-form responses produced by LLMs. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2106282
- PAR ID:
- 10636381
- Publisher / Repository:
- Findings of The 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025)
- Date Published:
- Page Range / eLocation ID:
- 13468-13482
- Subject(s) / Keyword(s):
- LLMs factuality evaluation
- Format(s):
- Medium: X
- Location:
- Vienna, Austria
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            LLMs have demonstrated impressive proficiency in generating coherent and high-quality text, making them valuable across a range of text- generation tasks. However, rigorous evaluation of this generated content is crucial, as ensuring its quality remains a significant challenge due to persistent issues such as factual inaccuracies and hallucination. This paper introduces three fine-tuned general-purpose LLM auto-evaluators, REC-8B, REC-12B and REC-70B, specifically designed to evaluate generated text across sev- eral dimensions: faithfulness, instruction follow- ing, coherence, and completeness. These mod- els not only provide ratings for these metrics but also offer detailed explanation and verifiable citation, thereby enhancing trust in the content. Moreover, the models support various citation modes, accommodating different requirements for latency and granularity. Extensive evalua- tions on diverse benchmarks demonstrate that our general-purpose LLM auto-evaluator, REC-70B, outperforms state-of-the-art LLMs, excelling in content evaluation by delivering better quality ex- planation and citation with minimal bias. Our REC dataset and models are available at https: //github.com/adelaidehsu/REC.more » « less
- 
            Lierler, Yuliya; Morales, Jose F; Dodaro, Carmine; Dahl, Veroniica; Gebser, Martin; Tekle, Tuncay (Ed.)Knowledge representation and reasoning (KRR) systems represent knowledge as collections of facts and rules. Like databases, KRR systems contain information about domains of human activities like industrial enterprises, science, and business. KRRs can represent complex concepts and relations, and they can query and manipulate information in sophisticated ways. Unfortunately, the KRR technology has been hindered by the fact that specifying the requisite knowledge requires skills that most domain experts do not have, and professional knowledge engineers are hard to find. One solution could be to extract knowledge from English text, and a number of works have attempted to do so (OpenSesame, Google's Sling, etc.). Unfortunately, at present, extraction of logical facts from unrestricted natural language is still too inaccurate to be used for reasoning, while restricting the grammar of the language (so-called controlled natural language, or CNL) is hard for the users to learn and use. Nevertheless, some recent CNL-based approaches, such as the Knowledge Authoring Logic Machine (KALM), have shown to have very high accuracy compared to others, and a natural question is to what extent the CNL restrictions can be lifted. In this paper, we address this issue by transplanting the KALM framework to a neural natural language parser, mStanza. Here we limit our attention to authoring facts and queries and therefore our focus is what we call factual English statements. Authoring other types of knowledge, such as rules, will be considered in our followup work. As it turns out, neural network based parsers have problems of their own and the mistakes they make range from part-of-speech tagging to lemmatization to dependency errors. We present a number of techniques for combating these problems and test the new system, KALMFL (i.e., KALM for factual language), on a number of benchmarks, which show KALMFL achieves correctness in excess of 95%.more » « less
- 
            Large language models (LLMs) are trained on a deluge of text data with limited quality control. As a result, LLMs can exhibit unintended or even harmful behaviours, such as leaking information, fake news or hate speech. Countermeasures, commonly referred to as preference alignment, include fine-tuning the pretrained LLMs with carefully crafted text examples of desired behaviour. Even then, empirical evidence shows preference aligned LLMs can be enticed to harmful behaviour. This so called jailbreaking of LLMs is typically achieved by adversarially modifying the input prompt to the LLM. Our paper provides theoretical insights into the phenomenon of preference alignment and jailbreaking from a statistical perspective. Under our framework, we first show that pretrained LLMs will mimic harmful behaviour if present in the training corpus. \textbf{Under that same framework, we then introduce a statistical notion of alignment, and lower-bound the jailbreaking probability, showing that it is unpreventable under reasonable assumptions.}more » « less
- 
            Watermarking involves implanting an imperceptible signal into generated text that can later be detected via statistical tests. A prominent family of watermarking strategies for LLMs embeds this signal by upsampling a (pseudorandomly-chosen) subset of tokens at every generation step. However, such signals alter the model’s output distribution and can have unintended effects on its downstream performance. In this work, we evaluate the performance of LLMs watermarked using three different strategies over a diverse suite of tasks including those cast as k-class classification (CLS), multiple choice question answering (MCQ), short-form generation (e.g., open-ended question answering) and long-form generation (e.g., translation) tasks. We find that watermarks (under realistic hyperparameters) can cause significant drops in LLMs’ effective utility across all tasks. We observe drops of 10 to 20% in CLS tasks in the average case, which shoot up to 100% in the worst case. We notice degradations of about 7% in MCQ tasks, 10-15% in short-form generation, and 5-15% in long-form generation tasks. Our findings highlight the trade-offs that users should be cognizant of when using watermarked models.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
