Currently, it is challenging to investigate aneurismal hemodynamics based on current in vivo data such as Magnetic Resonance Imaging or Computed Tomography due to the limitations in both spatial and temporal resolutions. In this work, we investigate the use of modal analysis at various resolutions to examine its usefulness for analyzing blood flows in brain aneurysms. Two variants of Dynamic Mode Decomposition (DMD): (i) Hankel-DMD; and (ii) Optimized-DMD, are used to extract the time-dependent dynamics of blood flows during one cardiac cycle. First, high-resolution hemodynamic data in patient-specific aneurysms are obtained using Computational Fluid Dynamics. Second, the dynamics modes, along with their spatial amplitudes and temporal magnitudes are calculated using the DMD analysis. Third, an examination of DMD analyses using a range of spatial and temporal resolutions of hemodynamic data to validate the applicability of DMD for low-resolution data, similar to ones in clinical practices. Our results show that DMD is able to characterize the inflow jet dynamics by separating large-scale structures and flow instabilities even at low spatial and temporal resolutions. Its robustness in quantifying the flow dynamics using the energy spectrum is demonstrated across different resolutions in all aneurysms in our study population. Our work indicates that DMD can be used for analyzing blood flow patterns of brain aneurysms and is a promising tool to be explored in in vivo.
more »
« less
This content will become publicly available on August 1, 2026
Dynamic Mode Decomposition of Geostrophically Balanced Motions From SWOT Cal/Val in the Separated Gulf Stream
Abstract The decomposition of oceanic flow into its geostrophically balanced and unbalanced motions carries theoretical and practical significance for the oceanographic community. These two motions have distinct dynamical characteristics and affect the transport of tracers differently from one another. The launch of the Surface Water and Ocean Topography (SWOT) satellite provides a prime opportunity to diagnose the surface balanced and unbalanced motions on a global scale at an unprecedented spatial resolution. Here, we apply dynamic‐mode decomposition (DMD), a linear‐algebraic data‐driven method, to tidally‐forced idealized and realistic numerical simulations at submesoscale‐permitting resolution and one‐day‐repeat SWOT observations of sea‐surface height (SSH) in the Gulf Stream downstream of Cape Hatteras, a region commonly referred to as the separated Gulf Stream. DMD is able to separate out the spatial modes associated with sub‐inertial periods from super‐inertial periods. The sub‐inertial modes of DMD can be used to extract geostrophically balanced motions from SSH fields, which have an imprint of internal gravity waves, so long as the data extends long enough in time. We utilize the statistical relation between relative vorticity and strain rate as the metric to gauge the extraction of geostrophy.
more »
« less
- Award ID(s):
- 2123740
- PAR ID:
- 10636383
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Earth and Space Science
- Volume:
- 12
- Issue:
- 8
- ISSN:
- 2333-5084
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
While the distribution of kinetic energy across spatial scales in the submesoscale range (1–100 km) has been estimated from observations, the associated time scales are largely unconstrained. These time scales can provide important insight into the dynamics of submesoscale turbulence because they help quantify to what degree the flow is subinertial and thus constrained by Earth’s rotation. Here a mooring array is used to estimate these time scales in the northeast Atlantic. Frequency-resolved structure functions indicate that energetic wintertime submesoscale turbulence at spatial scales around 10 km evolves on time scales of about 1 day. While these time scales are comparable to the inertial period, the observed flow also displays characteristics of subinertial flow that is geostrophically balanced to leading order. An approximate Helmholtz decomposition shows the order 10-km flow to be dominated by its rotational component, and the root-mean-square Rossby number at these scales is estimated to be 0.3. This rotational dominance and Rossby numbers below one persist down to 2.6 km, the smallest spatial scale accessible by the mooring array, despite substantially superinertial Eulerian evolution. This indicates that the Lagrangian evolution of submesoscale turbulence is slower than the Eulerian time scale estimated from the moorings. The observations therefore suggest that, on average, submesoscale turbulence largely follows subinertial dynamics in the 1–100-km range, even if Doppler shifting produces superinertial Eulerian evolution. Ageostrophic motions become increasingly important for the evolution of submesoscale turbulence as the scale is reduced—the root-mean-square Rossby number reaches 0.5 at a spatial scale of 2.6 km.more » « less
-
Abstract Rapid growth of magnetic‐field observations through SWARM and other satellite missions motivate new approaches to analyze it. Dynamic mode decomposition (DMD) is a method to recover spatially coherent motion with a periodic time dependence. We use this method to simultaneously analyze the geomagnetic radial field and its secular variation from CHAOS‐7 at high latitudes. A total of five modes are permitted by noise levels in the observations. One mode represents a slowly evolving background state, whereas the other four modes describe a pair of waves; each wave is comprised of a complex DMD mode and its complex conjugate. The waves have periods ofT1 = 19.1 andT2 = 58.4 years and quality factors ofQ1 = 11.0 andQ2 = 4.6, respectively. A 60‐year wave is consistent with previous predictions for zonal waves in a stratified fluid. The 20‐year wave is also consistent with previous reports at high latitudes, although its nature is less clear.more » « less
-
Atmospheric flows are often decomposed into balanced (low frequency) and unbalanced (high frequency) components. For a dry atmosphere, it is known that a single mode, the potential vorticity (PV), is enough to describe the balanced flow and determine its evolution. For a moist atmosphere with phase changes, on the other hand, balanced–unbalanced decompositions involve additional complexity. In this paper, we illustrate that additional balanced modes, beyond PV, arise from the moisture. To support and motivate the discussion, we consider balanced–unbalanced decompositions arising from a simplified Boussinesq numerical simulation and a hemispheric-sized channel simulation using the Weather Research and Forecasting (WRF) Model. One important role of the balanced moist modes is in the inversion principle that is used to recover the moist balanced flow: rather than traditional PV inversion that involves only the PV variable, it is PV-and- M inversion that is needed, involving M variables that describe the moist balanced modes. In examples of PV-and- M inversion, we show that one can decompose all significant atmospheric variables, including total water or water vapor, into balanced (vortical mode) and unbalanced (inertio-gravity wave) components. The moist inversion, thus, extends the traditional dry PV inversion to allow for moisture and phase changes. In addition, we illustrate that the moist balanced modes are essentially conserved quantities of the flow, and they act qualitatively as additional PV-like modes of the system that track balanced moisture.more » « less
-
{"Abstract":["Gulf Stream paths (daily, monthly, and annual) from 1993-01-01 to 2023-12-31 are identified via the longest 25-cm sea surface height contour in the Northwest Atlantic (75°W–55°W; 33°N–43°N) from the daily 1/8° resolution maps of absolute dynamic topography from the E.U. Copernicus Marine Service product Global Ocean Gridded Level 4 Sea Surface Heights and Derived Variables Reprocessed 1993 Ongoing, following the methodology of Andres (2016). The daily sea surface height fields are averaged to monthly and annual fields to identify the corresponding monthly and annual Gulf Stream paths. Additionally, an updated Gulf Stream destabilization point time series (1993–2023), which builds upon the work of Andres (2016), was generated using the E.U. Copernicus Marine Service product Global Ocean Gridded Level 4 Sea Surface Heights and Derived Variables Reprocessed 1993 Ongoing (1/8°). Similar to Andres (2016), the monthly Gulf Stream path is identified as the 25-cm SSH contour from absolute dynamic topography maps. The 12 monthly mean paths are divided yearly into 0.5° longitude bins (from 75°W to 55°W). In some months, the Gulf Stream can take a meandering path and contort over itself in an “S” curve. In these cases, the northernmost latitude is used in the variance calculation to resolve the issue of multiple latitudes for a single longitude. The variance of the Gulf Stream position (latitude) is then calculated for each year using the 12 monthly mean paths. The destabilization point is defined as the first downstream distance (longitude) at which the variance of the Gulf Stream position exceeds 0.4(°)2, which differs from the original threshold value of 0.5(°)2 in Andres (2016). The threshold value of 0.4(°)2 is the 70th percentile of variance for all years, which marks the transition from a relatively stable jet to an unstable, meandering current in the new higher-resolution (1/8°) maps of absolute dynamic topography.\n\nThanks to improvements in processing and combining satellite altimeter data (Taburet et al., 2019), in recent years the maps of absolute dynamic topography are different than the maps used by Andres (2016), which had 1/4° resolution. To account for the differences in the resolution of the data and corrections to the processing standards of altimeter data, a new threshold value was chosen that is consistent with the methods of Andres (2016), i.e., the threshold still signifies the transition between a stable and unstable Gulf Stream. However, a lower threshold value is necessary in the new absolute dynamic topography maps since finer-resolution data can separate distinct local maxima in variance, which could be smoothed together in coarser data, and may cause the destabilization point to be identified further downstream if the threshold were not adjusted. The 70th percentile of variance (0.4(°)2) for all years (1993–2023) was chosen as the threshold because the distribution of variance is right-skewed with a long tail and the 70th percentile separate lower variance associated with meridional shifts in the Gulf Stream path from the extreme, vigorous meadnering that occurs downstream of the "destabilization point".\n\nThe daily, monthly, annual Gulf Stream paths, and the updated destabilization point time series were generated using the E.U. Copernicus Marine Service product Global Ocean Gridded Level 4 Sea Surface Heights and Derived Variables Reprocessed 1993 Ongoing (https://doi.org/10.48670/moi-00148). \n\n \n\n "]}more » « less
An official website of the United States government
