skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 4, 2026

Title: Intra-axonal Nanomagnetic Forces Differentially Impact hTau40 Transport Dynamics in Primary Cortical and Hippocampal Neurons
A crucial aspect of neural engineering is the ability to manipulate proteins that are substantially involved in axonal outgrowth and maintenance. Previous work in this field has shown that applying low-magnitude (piconewton) forces to early stage neurons can result in altered distributions of critical structural proteins, such as the microtubule-associated protein Tau. Uncovering the mechanisms of Tau redistribution could provide a tool for manipulating dysregulated forms of the protein. This study examined how the transport of Tau responded to intra-axonal nanomagnetic forces (NMFs) in primary cortical and hippocampal neurons. High magnification, live cell fluorescent imaging was employed to visualize the transport of both full-length human Tau (hTau40) and amine-terminated, starch-coated fluorescent magnetic nanoparticles (afMNPs) to observe how these cell-internal forces could impact the transport of hTau40 within the axon. Here, we found that afMNPs acted by pulling on hTau40 puncta under NMF application, especially within cortical cells, where afMNPs were more likely to be found within the axon. Forces greater than 1 pN enabled differentiated transport speeds and displacement of hTau40 based on relative force direction. This data indicates that NMF can be utilized to engineer hTau40 transport, even in cells at later stages of maturation.  more » « less
Award ID(s):
1846271
PAR ID:
10636592
Author(s) / Creator(s):
;
Publisher / Repository:
ACS Publications
Date Published:
Journal Name:
ACS Nano
Volume:
19
Issue:
8
ISSN:
1936-0851
Page Range / eLocation ID:
7884 to 7897
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kayed, Rakez (Ed.)
    Background: In Alzheimer’s disease (AD) brain, neuronal polarity and synaptic connectivity are compromised. A key structure for regulating polarity and functions of neurons is the axon initial segment (AIS), which segregates somatodendritic from axonal proteins and initiates action potentials. Toxic tau species, including extracellular oligomers (xcTauOs), spread tau pathology from neuron to neuron by a prion-like process, but few other cell biological effects of xcTauOs have been described. Objective: Test the hypothesis that AIS structure is sensitive to xcTauOs. Methods: Cultured wild type (WT) and tau knockout (KO) mouse cortical neurons were exposed to xcTauOs, and quantitative western blotting and immunofluorescence microscopy with anti-TRIM46 monitored effects on the AIS. The same methods were used to compare TRIM46 and two other resident AIS proteins in human hippocampal tissue obtained from AD and age-matched non-AD donors. Results: Without affecting total TRIM46 levels, xcTauOs reduce the concentration of TRIM46 within the AIS and cause AIS shortening in cultured WT, but not TKO neurons. Lentiviral-driven tau expression in tau KO neurons rescues AIS length sensitivity to xcTauOs. In human AD hippocampus, the overall protein levels of multiple resident AIS proteins are unchanged compared to non-AD brain, but TRIM46 concentration within the AIS and AIS length are reduced in neurons containing neurofibrillary tangles. Conclusion: xcTauOs cause partial AIS damage in cultured neurons by a mechanism dependent on intracellular tau, thereby raising the possibility that the observed AIS reduction in AD neurons in vivo is caused by xcTauOs working in concert with endogenous neuronal tau. 
    more » « less
  2. IntroductionIn the developing brain, neurons extend an axonal process through a complex and changing environment to form synaptic connections with the correct targets in response to extracellular cues. Microtubule and actin filaments provide mechanical support and drive axon growth in the correct direction. The axonal cytoskeleton responds to extracellular guidance cues. Netrin-1 is a multifunctional guidance cue that can induce alternate responses based on the bound receptor. The mechanism by which actin responds to Netrin-1 is well described. However, how Netrin-1 influences the microtubule cytoskeleton is less understood. Appropriate microtubule function is required for axon pathfinding, as mutations in tubulin phenocopy axon crossing defects of Netrin-1 and DCC mutants. Microtubule stabilization is required for attractive guidance cue response. The C-terminal tails of microtubules can be post-translationally modified. Post-translational modifications (PTMs) help control the microtubule cytoskeleton. MethodsWe measured polyglutamylation in cultured primary mouse cortical neurons before and after Netrin-1 stimulation. We used immunohistochemistry to measure how Netrin-1 stimulation alters microtubule-associated protein localization. Next, we manipulated TTLL1 to determine if Netrin-1-induced axon growth and MAP localization depend on polyglutamylation levels. ResultsIn this study, we investigated if Netrin-1 signaling alters microtubule PTMs in the axon. We found that microtubule polyglutamylation increases after Netrin-1 stimulation. This change in polyglutamylation is necessary for Netrin-1-induced axonal growth rate increases. We next determined that MAP1B and DCX localization changes in response to Netrin-1. These proteins can both stabilize the microtubule cytoskeleton and may be responsible for Netrin-1-induced growth response in neurons. The changes in DCX and MAP1B depend on TTLL1, a protein responsible for microtubule polyglutamylation. 
    more » « less
  3. Abstract BackgroundNeuronal polarity and synaptic connectivity are compromised in Alzheimer’s disease (AD) and other tauopathies. The axon initial segment (AIS) is a key structure for regulating polarity and functions of neurons. It occupies the first 20‐60 µm of the axon, comprises a diffusion barrier that segregates axon‐enriched from somatodendritic‐enriched molecules, and has a high concentration of voltage‐gated ion channels that generate action potentials. Extracellular amyloid‐β oligomers compromise AIS integrity. However, effects on the AIS of toxic tau species, including extracellular oligomers (xcTauOs) that spread tau pathology from neuron to neuron by a prion‐like process, whereas unknown. Therefore, we wanted to test the hypothesis that AIS structure is sensitive to xcTauOs. MethodPrimary cortical neurons derived from either wild type (WT), or tau knockout (KO) mice were exposed to xcTauOs or vehicle. Quantitative western blotting and immunofluorescence microscopy with an antibody against the AIS‐enriched protein TRIM46 was used to monitor effects on the AIS. The same methods were also used to compare TRIM46 and two other AIS proteins, ankyrin‐G and neurofascin‐186 in human hippocampal tissue obtained from AD and age‐matched non‐AD donors. ResultIn cultured WT, but not TKO neurons, xcTauOs cause a trend toward AIS shortening and reduce the concentration of the resident AIS protein, TRIM46, without affecting total TRIM46 levels. Lentiviral‐driven human tau expression in tau KO neurons rescues TRIM46 sensitivity to xcTauOs. In human AD hippocampus, AIS length and TRIM46 concentration within the AIS are reduced in neurons containing neurofibrillary tangles (NFTs), without affecting the overall protein levels of multiple resident AIS proteins. ConclusionThese collective findings demonstrate that in cultured neurons, xcTauOs cause partial AIS damage by a mechanism dependent on intracellular tau, thereby raising the possibility that AIS reduction in AD is caused by xcTauOs working in concert with endogenous neuronal tau. 
    more » « less
  4. ABSTRACT Alphaherpesviruses such as herpes simplex virus and pseudorabies virus (PRV) are neuroinvasive double-stranded DNA (dsDNA) viruses that establish lifelong latency in peripheral nervous system (PNS) neurons of their native hosts. Following reactivation, infection can spread back to the initial mucosal site of infection or, in rare cases, to the central nervous system, with usually serious outcomes. During entry and egress, viral capsids depend on microtubule-based molecular motors for efficient and fast transport. In axons of PNS neurons, cytoplasmic dynein provides force for retrograde movements toward the soma, and kinesins move cargo in the opposite, anterograde direction. The dynamic properties of virus particles in cells can be imaged by fluorescent protein fusions to the small capsid protein VP26, which are incorporated into capsids. However, single-color fluorescent protein tags fail to distinguish the virus inoculum from progeny. Therefore, we established a dual-color system by growing a recombinant PRV expressing a red fluorescent VP26 fusion (PRV180) on a stable cell line expressing a green VP26 fusion (PK15-mNG-VP26). The resulting dual-color virus preparation (PRV180G) contains capsids tagged with both red and green fluorescent proteins, and 97% of particles contain detectable levels of mNeonGreen (mNG)-tagged VP26. After replication in neuronal cells, all PRV180G progeny exclusively contain monomeric red fluorescent protein (mRFP)-VP26-tagged capsids. We used PRV180G for an analysis of axonal capsid transport dynamics in PNS neurons. Fast dual-color total internal reflection fluorescence (TIRF) microscopy, single-particle tracking, and motility analyses reveal robust, bidirectional capsid motility mediated by cytoplasmic dynein and kinesin during entry, whereas egressing progeny particles are transported exclusively by kinesins. IMPORTANCE Alphaherpesviruses are neuroinvasive viruses that infect the peripheral nervous system (PNS) of infected hosts as an integral part of their life cycle. Establishment of a quiescent or latent infection in PNS neurons is a hallmark of most alphaherpesviruses. Spread of infection to the central nervous system is surprisingly rare in natural hosts but can be fatal. Pseudorabies virus (PRV) is a broad-host-range swine alphaherpesvirus that enters neuronal cells and utilizes intracellular transport processes to establish infection and to spread between cells. By using a virus preparation with fluorescent viral capsids that change color depending on the stage of the infectious cycle, we find that during entry, axons of PNS neurons support robust, bidirectional capsid motility, similar to cellular cargo, toward the cell body. In contrast, progeny particles appear to be transported unidirectionally by kinesin motors toward distal egress sites. 
    more » « less
  5. Dague, Etienne (Ed.)
    The formation of neuron networks is a complex phenomenon of fundamental importance for understanding the development of the nervous system, and for creating novel bioinspired materials for tissue engineering and neuronal repair. The basic process underlying the network formation is axonal growth, a process involving the extension of axons from the cell body towards target neurons. Axonal growth is guided by environmental stimuli that include intercellular interactions, biochemical cues, and the mechanical and geometrical features of the growth substrate. The dynamics of the growing axon and its biomechanical interactions with the growing substrate remains poorly understood. In this paper, we develop a model of axonal motility which incorporates mechanical interactions between the axon and the growth substrate. We combine experimental data with theoretical analysis to measure the parameters that describe axonal growth on surfaces with micropatterned periodic geometrical features: diffusion (cell motility) coefficients, speed and angular distributions, and axon bending rigidities. Experiments performed on neurons treated Taxol (inhibitor of microtubule dynamics) and Blebbistatin (disruptor of actin filaments) show that the dynamics of the cytoskeleton plays a critical role in the axon steering mechanism. Our results demonstrate that axons follow geometrical patterns through a contact-guidance mechanism, in which high-curvature geometrical features impart high traction forces to the growth cone. These results have important implications for our fundamental understanding of axonal growth as well as for bioengineering novel substrates that promote neuronal growth and nerve repair. 
    more » « less