Abstract Magnetic reconnection occurring between the interplanetary magnetic field (IMF) and the dayside magnetopause causes a circulation of magnetic flux and plasma within the magnetosphere, known as the Dungey cycle. This circulation is transmitted to the ionosphere via field‐aligned currents (FACs). The magnetic flux transport within the Dungey cycle is quantified by the cross‐polar cap potential (CPCP or transpolar voltage). Previous studies have suggested that under strong driving conditions the CPCP can saturate near a value of 250 kV. In this study we investigate whether an analogous saturation occurs in the magnitudes of the FACs, using observations from the Active Magnetosphere and Planetary Electrodynamics Response Experiment. The solar wind speed, density and pressure, theBzcomponent of the IMF, and combinations of these, were compared to the concurrent integrated current magnitude, across each hemisphere. We find that FAC magnitudes are controlled most strongly by solar wind speed and the orientation and strength of the IMF. FAC magnitude increases monotonically with solar wind driving but there is a distinct knee in the variation around IMFBz = −10 nT, above which the increase slows. 
                        more » 
                        « less   
                    This content will become publicly available on September 1, 2026
                            
                            Dayside Reconnection and Associated Cusp Structure in Response to Solar Wind Rotational Discontinuity (RD) in ANGIE3D Simulation
                        
                    
    
            Abstract Solar wind directional discontinuities, such as rotational discontinuities (RDs), significantly influence energy and transport processes in the Earth's magnetosphere. A recent observational study identified a long‐lasting double cusp precipitation event associated with RD in solar wind on 10 April 2015. To understand the magnetosphere‐ionosphere response to the solar wind RD, a global hybrid simulation of the magnetosphere was conducted, with solar wind conditions based on the observation event. The simulation results show significant variations in the magnetopause and cusp regions caused by the passing RD. After the RD propagates to the magnetopause, ion precipitation intensifies, and a double cusp structure at varying latitudes and longitudes forms near noon in the northern hemisphere, which is consistent with the satellite observations by Wing et al. (2023,https://doi.org/10.1029/2023gl103194). Regarding dayside magnetopause reconnection, the simulation reveals that the high‐latitude reconnection process persists during the RD passing, regardless of whether the interplanetary magnetic field (IMF) with a highBy/Bzratio has a positive or negativeBzcomponent, and low‐latitude reconnection occurs after the RD reaches the magnetopause at noon when the IMF turns southward. By examining the ion sources along the magnetic field lines, a connection is found between the single‐ or double‐cusp ion precipitation and the solar wind ions entering from both high‐latitude and low‐latitude reconnection sites. This result suggests that the double‐cusp structure can be triggered by magnetic reconnection occurring at both low latitudes and high latitudes in the opposite hemispheres, associated with a largeBy/Bzratio of the IMF around the RD. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10636752
- Publisher / Repository:
- Journal of Geophysical Research: Space Physics
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 130
- Issue:
- 9
- ISSN:
- 2169-9380
- Subject(s) / Keyword(s):
- hybrid simulation Cusp ion precipitation
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We introduce a new framework called Machine Learning (ML) based Auroral Ionospheric electrodynamics Model (ML‐AIM). ML‐AIM solves a current continuity equation by utilizing the ML model of Field Aligned Currents of Kunduri et al. (2020,https://doi.org/10.1029/2020JA027908), the FAC‐derived auroral conductance model of Robinson et al. (2020,https://doi.org/10.1029/2020JA028008), and the solar irradiance conductance model of Moen and Brekke (1993,https://doi.org/10.1029/92gl02109). The ML‐AIM inputs are 60‐min time histories of solar wind plasma, interplanetary magnetic fields (IMF), and geomagnetic indices, and its outputs are ionospheric electric potential, electric fields, Pedersen/Hall currents, and Joule Heating. We conduct two ML‐AIM simulations for a weak geomagnetic activity interval on 14 May 2013 and a geomagnetic storm on 7–8 September 2017. ML‐AIM produces physically accurate ionospheric potential patterns such as the two‐cell convection pattern and the enhancement of electric potentials during active times. The cross polar cap potentials (ΦPC) from ML‐AIM, the Weimer (2005,https://doi.org/10.1029/2004ja010884) model, and the Super Dual Auroral Radar Network (SuperDARN) data‐assimilated potentials, are compared to the ones from 3204 polar crossings of the Defense Meteorological Satellite Program F17 satellite, showing better performance of ML‐AIM than others. ML‐AIM is unique and innovative because it predicts ionospheric responses to the time‐varying solar wind and geomagnetic conditions, while the other traditional empirical models like Weimer (2005,https://doi.org/10.1029/2004ja010884) designed to provide a quasi‐static ionospheric condition under quasi‐steady solar wind/IMF conditions. Plans are underway to improve ML‐AIM performance by including a fully ML network of models of aurora precipitation and ionospheric conductance, targeting its characterization of geomagnetically active times.more » « less
- 
            Abstract We analyze three substorms that occur on (1) 9 March 2008 05:14 UT, (2) 26 February 2008 04:05 UT, and (3) 26 February 2008 04:55 UT. Using ACE solar wind velocity and interplanetary magnetic fieldBzvalues, we calculate the rectified (southwardBz) solar wind voltage propagated to the magnetosphere. The solar wind conditions for the two events were vastly different, 300 kV for 9 March 2008 substorm, compared to 50 kV for 26 February 2008. The voltage is input to a nonlinear physics‐based model of the magnetosphere called WINDMI. The output is the westward auroral electrojet current which is proportional to the auroral electrojet (AL) index from World Data Center for Geomagnetism Kyoto and the SuperMAG auroral electrojet index (SML). Substorm onset times are obtained from the superMAG substorm database, Pu et al. (2010,https://doi.org/10.1029/2009JA014217), Lui (2011,https://doi.org/10.1029/2010JA016078) and synchronized to Time History of Events and Macroscale Interactions during Substorms satellite data. The timing of onset, model parameters, and intermediate state space variables are analyzed. The model onsets occurred about 5 to 10 min earlier than the reported onsets. Onsets occurred when the geotail current in the WINDMI model reached a critical threshold of 6.2 MA for the 9 March 2008 event, while, in contrast, a critical threshold of 2.1 MA was obtained for the two 26 February 2008 events. The model estimates 1.99 PJ of total energy transfer during the 9 March 2008 event, with 0.95 PJ deposited in the ionosphere. The smaller events on 26 February 2008 resulted in a total energy transfer of 0.37 PJ according to the model, with 0.095 PJ deposited in the ionosphere.more » « less
- 
            Abstract The total energy transfer from the solar wind to the magnetosphere is governed by the reconnection rate at the magnetosphere edges as the Z‐component of interplanetary magnetic field (IMFBz) turns southward. The geomagnetic storm on 21–22 January 2005 is considered to be anomalous as the SYM‐H index that signifies the strength of ring current, decreases and had a sustained trough value of −101 nT lasting more than 6 hr under northward IMFBzconditions. In this work, the standard WINDMI model is utilized to estimate the growth and decay of magnetospheric currents by using several solar wind‐magnetosphere coupling functions. However, it is found that the WINDMI model driven by any of these coupling functions is not fully able to explain the decrease of SYM‐H under northward IMFBz. A dense plasma sheet along with signatures of a highly stretched magnetosphere was observed during this storm. The SYM‐H variations during the entire duration of the storm were only reproduced after modifying the WINDMI model to account for the effects of the dense plasma sheet. The limitations of directly driven models relying purely on the solar wind parameters and not accounting for the state of the magnetosphere are highlighted by this work.more » « less
- 
            Abstract In the present study we investigate the response of the dayside ground magnetic field to the sequence of interplanetary magnetic field (IMF)BYchanges during the May 2024 geomagnetic storm. We pay particular attention to its extraordinarily large (>120 nT) and abrupt flip, and use GOES‐18 (G18) magnetic field measurements in the dayside magnetosheath as a time reference. In the dayside auroral zone, the northward magnetic component changed by as much as 4,300 nT from negative to positive indicating that the direction of the auroral electrojet changed from westward to eastward. The overall sequence was consistent with the conventional understanding of the IMFBYdriving of zonal ionospheric flows and Hall currents, which is also confirmed by a global simulation conducted for this storm. Surprisingly, however, the time delay from G18 to the ground increased significantly in time. The delay was 2–3 min for a sharpBYreduction ∼30 min prior to theBYflip, but it became as long as 10 min for the zero‐crossing of theBYflip. It is suggested that the prolonged time delay reflected the travel time from G18 to the reconnection site, which sensitively depends on the final velocity at the magnetopause, that is, the inflow velocity of the magnetic reconnection. Around theBYflip, the solar wind number density transiently exceeded 100 cm−3, and should have increased further through the bow shock crossing. It is suggested that this unusually dense plasma reduced the reconnection rate, and therefore, the solar wind‐magnetosphere energy coupling due to the extraordinary IMF.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
