Organ transplantation remains the only treatment option for patients with end-stage organ failure. The last decade has seen a flurry of activity in improving organ preservation technologies, which promise to increase utilization in a dramatic fashion. They also bring the promise of extending the preservation duration significantly, which opens the doors to sharing organs across local and international boundaries and transforms the field. In this work, we review the recent literature on machine perfusion of livers across various protocols in development and clinical use, in the context of extending the preservation duration. We then review the next generation of technologies that have the potential to further extend the limits and open the door to banking organs, including supercooling, partial freezing, and nanowarming, and outline the opportunities arising in the field for researchers in the short and long term. 
                        more » 
                        « less   
                    
                            
                            Supercooling: a promising technique for prolonged preservation in solid organ transplantation, and early perspectives in vascularized composite allografts
                        
                    
    
            Ex vivopreservation of transplanted organs is undergoing spectacular advances. Machine perfusion is now used in common practice for abdominal and thoracic organ transportation and preservation, and early results are in favor of substantially improved outcomes. It is based on decreasing ischemia-reperfusion phenomena by providing physiological or sub-physiological conditions until transplantation. Alternatively, supercooling techniques involving static preservation at negative temperatures while avoiding ice formation have shown encouraging results in solid organs. Here, the rationale is to decrease the organ's metabolism and need for oxygen and nutrients, allowing for extended preservation durations. The aim of this work is to review all advances of supercooling in transplantation, browsing the literature for each organ. A specific objective was also to study the initial evidence, the prospects, and potential applications of supercooling preservation in Vascularized Composite Allotransplantation (VCA). This complex entity needs a substantial effort to improve long-term outcomes, marked by chronic rejection. Improving preservation techniques is critical to ensure the favorable evolution of VCAs, and supercooling techniques could greatly participate in these advances. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1941543
- PAR ID:
- 10637004
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Transplantation
- Volume:
- 2
- ISSN:
- 2813-2440
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This technical paper introduces a novel organ preservation system based on isochoric (constant volume) supercooling. The system is designed to enhance the stability of the metastable supercooling state, offering potential long-term preservation of large biological organs at subfreezing temperatures without the need for cryoprotectant additives. Detailed technical designs and usage protocols are provided for researchers interested in exploring this field. The paper also presents a control system based on the thermodynamics of isochoric freezing, utilizing pressure monitoring for process control. Sham experiments were performed using whole pig liver sourced from a local food supplier to evaluate the system’s ability to sustain supercooling without ice nucleation for extended periods. The results demonstrated sustained supercooling without ice nucleation in pig liver tissue for 24 and 48 h. These findings suggest the potential of this technology for large-volume, cryoprotectant-free organ preservation with real-time control over the preservation process. The simplicity of the isochoric supercooling device and the design details provided in the paper are expected to serve as encouragement for other researchers in the field to pursue further research on isochoric supercooling. However, final evidence that these preserved organs can be successfully transplanted is still lacking.more » « less
- 
            Abstract The limited preservation duration of organs has contributed to the shortage of organs for transplantation. Recently, a tripling of the storage duration was achieved with supercooling, which relies on temperatures between −4 and −6 °C. However, to achieve deeper metabolic stasis, lower temperatures are required. Inspired by freeze-tolerant animals, we entered high-subzero temperatures (−10 to −15 °C) using ice nucleators to control ice and cryoprotective agents (CPAs) to maintain an unfrozen liquid fraction. We present this approach, termed partial freezing, by testing gradual (un)loading and different CPAs, holding temperatures, and storage durations. Results indicate that propylene glycol outperforms glycerol and injury is largely influenced by storage temperatures. Subsequently, we demonstrate that machine perfusion enhancements improve the recovery of livers after freezing. Ultimately, livers that were partially frozen for 5-fold longer showed favorable outcomes as compared to viable controls, although frozen livers had lower cumulative bile and higher liver enzymes.more » « less
- 
            Abstract Ischemia is a major limiting factor in Vascularized Composite Allotransplantation (VCA) as irreversible muscular injury can occur after as early as 4-6 hours of static cold storage (SCS). Organ preservation technologies have led to the development of storage protocols extending rat liver ex vivo preservation up to 4 days. Development of such a protocol for VCAs has the added challenge of inherent ice nucleating factors of the graft, therefore this study focused on developing a robust protocol for VCA supercooling. Rodent partial hindlimbs underwent subnormothermic machine perfusion (SNMP) with several loading solutions, followed by cryoprotective agent (CPA) cocktail developed for VCAs. Storage occurred in suspended animation for 24h and VCAs were recovered using SNMP with modified Steen. This study shows a robust VCA supercooling preservation protocol in a rodent model. Further optimization is expected to allow for its application in a transplantation model, which would be a breakthrough in the field of VCA preservation.*Irina Filz von Reiterdank & Pierre Tawa Contributed equally.more » « less
- 
            The complexity of transplant medicine pushes the boundaries of innate, human reasoning. From networks of immune modulators to dynamic pharmacokinetics to variable postoperative graft survival to equitable allocation of scarce organs, machine learning promises to inform clinical decision making by deciphering prodigious amounts of available data. This paper reviews current research describing how algorithms have the potential to augment clinical practice in solid organ transplantation. We provide a general introduction to different machine learning techniques, describing their strengths, limitations, and barriers to clinical implementation. We summarize emerging evidence that recent advances that allow machine learning algorithms to predict acute post-surgical and long-term outcomes, classify biopsy and radiographic data, augment pharmacologic decision making, and accurately represent the complexity of host immune response. Yet, many of these applications exist in pre-clinical form only, supported primarily by evidence of single-center, retrospective studies. Prospective investigation of these technologies has the potential to unlock the potential of machine learning to augment solid organ transplantation clinical care and health care delivery systems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    