Immersed in external magnetic fields (B), buckled graphene constitutes an ideal tabletop setup, manifesting a confluence of time-reversal symmetry (T) breaking Abelian (B) and T-preserving strain-induced internal axial (b) magnetic fields. In such a system, here we numerically compute two-terminal conductance (G), and four- as well as six-terminal Hall conductivity (σxy) for spinless fermions. On a flat graphene (b=0), the B field produces quantized plateaus at G=±|σxy|=(2n+1)e2/h, where n=0,1,2,⋯. The strain-induced b field lifts the twofold valley degeneracy of higher Landau levels and leads to the formation of additional even-integer plateaus at G=±|σxy|=(2,4,⋯)e2/h, when B>b. While the same sequence of plateaus is observed for G when b>B, the numerical computation of σxy in Hall bar geometries in this regime becomes unstable. A plateau at G=σxy=0 always appears with the onset of a charge-density-wave order, causing a staggered pattern of fermionic density between two sublattices of the honeycomb lattice.
more »
« less
This content will become publicly available on November 12, 2025
Spin–orbit enabled unconventional Stoner magnetism
The Stoner instability remains a cornerstone for understanding metallic ferromagnets. This instability captures the interplay of Coulomb repulsion, Pauli exclusion, and twofold fermionic spin degeneracy. In materials with spin–orbit coupling, this fermionic spin is generalized to a twofold degenerate pseudospin which is typically believed to have symmetry properties as spin. Here, we identify a distinct symmetry of this pseudospin that forbids it to couple to a Zeeman field. This “spinless” property is required to exist in five nonsymmorphic space groups and has nontrivial implications for superconductivity and magnetism. With Coulomb repulsion, Fermi surfaces composed primarily of this spinless pseudospin property give rise to Stoner instabilities into magnetic states that are qualitatively different than ferromagnets. These spinless-pseudospin ferromagnets break time-reversal symmetry, have a vanishing magnetization, are noncollinear, and exhibit momentum-dependent energy band spin-splittings. In superconductors, for all pairing symmetries and field orientations, this spinless pseudospin extinguishes paramagnetic limiting. We discuss applications to superconducting UCoGe and magnetic NiS_2-xSex
more »
« less
- Award ID(s):
- 2323857
- PAR ID:
- 10637121
- Publisher / Repository:
- PNAS
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 121
- Issue:
- 46
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In ferromagnetic systems lacking inversion symmetry, an applied electric field can control the ferromagnetic order parameters through the spin-orbit torque. The prototypical example is a bilayer heterostructure composed of a ferromagnet and a heavy metal that acts as a spin current source. In addition to such bilayers, spin-orbit coupling can mediate spin-orbit torques in ferromagnets that lack bulk inversion symmetry. A recently discovered example is the two-dimensional monolayer ferromagnet Fe3GeTe2. In this paper, we use first-principles calculations to study the spin-orbit torque and ensuing magnetic dynamics in this material. By expanding the torque versus magnetization direction as a series of vector spherical harmonics, we find that higher order terms (up to ℓ=4) are significant and play important roles in the magnetic dynamics. They give rise to deterministic, magnetic field-free electrical switching of perpendicular magnetization.more » « less
-
Two-dimensional van der Waals (vdW) magnetic materials hold promise for the development of high-density, energy-efficient spintronic devices for memory and computation. Recent breakthroughs in material discoveries and spin-orbit torque control of vdW ferromagnets have opened a path for integration of vdW magnets in commercial spintronic devices. However, a solution for field-free electric control of perpendicular magnetic anisotropy (PMA) vdW magnets at room temperatures, essential for building compact and thermally stable spintronic devices, is still missing. Here, we report a solution for the field-free, deterministic, and nonvolatile switching of a PMA vdW ferromagnet, Fe3GaTe2, above room temperature (up to 320 K). We use the unconventional out-of-plane anti-damping torque from an adjacent WTe2layer to enable such switching with a low current density of 2.23 × 106A cm−2. This study exemplifies the efficacy of low-symmetry vdW materials for spin-orbit torque control of vdW ferromagnets and provides an all-vdW solution for the next generation of scalable and energy-efficient spintronic devices.more » « less
-
In magnetic pyrochlore materials, the interplay of spin-orbit coupling, electronic correlations, and geometrical frustration gives rise to exotic quantum phases, including topological semimetals and spin ice. While these phases have been observed in isolation, the interface-driven phenomena emerging from their interaction have never been realized previously. Here, we report on the discovery of interfacial electronic anisotropy and rotational symmetry breaking at a heterostructure consisting of the Weyl semimetal Eu2Ir2O7and spin ice Dy2Ti2O7. Subjected to magnetic fields, we unveil a sixfold anisotropic transport response that is theoretically accounted by a Kondo-coupled heterointerface, where the spin ice’s field-tuned magnetism induces electron scattering in the Weyl semimetal’s topological Fermi-arc states. Furthermore, at elevated magnetic fields, we reveal a twofold anisotropic response indicative of the emergence of a symmetry-broken many-body state. This discovery showcases the potential of pyrochlore frustrated magnet/topological semimetal heterostructures in search of emergent interfacial phenomena.more » « less
-
Abstract Current induced spin-orbit torque (SOT) holds great promise for next generation magnetic-memory technology. Field-free SOT switching of perpendicular magnetization requires the breaking of in-plane symmetry, which can be artificially introduced by external magnetic field, exchange coupling or device asymmetry. Recently it has been shown that the exploitation of inherent crystal symmetry offers a simple and potentially efficient route towards field-free switching. However, applying this approach to the benchmark SOT materials such as ferromagnets and heavy metals is challenging. Here, we present a strategy to break the in-plane symmetry of Pt/Co heterostructures by designing the orientation of Burgers vectors of dislocations. We show that the lattice of Pt/Co is tilted by about 1.2° when the Burgers vector has an out-of-plane component. Consequently, a tilted magnetic easy axis is induced and can be tuned from nearly in-plane to out-of-plane, enabling the field-free SOT switching of perpendicular magnetization components at room temperature with a relatively low current density (~1011 A/m2) and excellent stability (> 104cycles). This strategy is expected to be applicable to engineer a wide range of symmetry-related functionalities for future electronic and magnetic devices.more » « less
An official website of the United States government
