skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 16, 2026

Title: CFD Analysis and Design Optimization of Dandelion-Inspired Flying Sensors for Remote Sensing in Inaccessible Environments
This study investigates the aerodynamic performance of different flying sensors inspired by dandelion seeds, using COMSOL Multiphysics CFD simulation. Dandelion seeds are well known for their ability to remain suspended in the air for extended periods due to their lightweight structure, higher porosity, high drag, and the formation of a separated vortex ring (SVR) above the seed. Mimicking this behavior, five 2D and one 3D geometry were developed and analyzed first through steady-state simulations to explore how different design geometries influence passive flight performance. The primary aim is to identify an optimized structure that can achieve slower descent when realized from an altitude by drones for remote sensing. Steady-state results showed that although the drag coefficient generally decreased with increase in Reynolds numbers, porosity did not exhibit a constant trend across all designs. In some cases, geometries with lower porosity outperformed more porous ones. This may be due to their structural differences. SVR was observed in all designs. However, the distance between these SVR and geometry’s surface was small. While steady-state results give a fair indication of the aerodynamic behavior and relative performances of the various geometries, there are limitations. To address this, transient drop tests, currently under verification, will give a better understanding of the performances of these designs from which the best will be selected.  more » « less
Award ID(s):
2430771
PAR ID:
10637155
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Aeronautics and Astronautics
Date Published:
ISBN:
978-1-62410-738-2
Format(s):
Medium: X
Location:
Las Vegas, Nevada
Sponsoring Org:
National Science Foundation
More Like this
  1. This study aimed to investigate the aerodynamic and thermal behavior of dandelion diaspore analogs to explore the effect of coloration on the overall flow field. To do so, computational fluid dynamics simulations were performed on simplified porous disk models across varying absorptivities under steady-state and transient conditions. By coupling heat transfer and fluid dynamics, the simulations captured the influence of thermal gradients on stable vortex ring formation and overall drag forces. Results showed that increased surface temperature, caused by higher absorptivity, enhanced buoyancy forces, disrupted vortex ring formation, and elevated drag coefficients. Conversely, white-colored analogs exhibited lower thermal loading and reduced aerodynamic resistance. While the current model employed a rigid, porous disk approximation, it provides valuable insights into the effects on the fluid flow of unmanned, dandelion-inspired micro aerial vehicles (MAVs). 
    more » « less
  2. The drag coefficient plays a vital role in the design and optimization of robots that move through fluids. From aircraft to underwater vehicles, their geometries are specially engineered so that the drag coefficients are as low as possible to achieve energy-efficient performances. Origami magic balls are 3-dimensional reconfigurable geometries composed of repeated simple water-bomb units. Their volumes can change as their geometries vary and we have used this concept in a recent underwater robot design. This paper characterizes the drag coefficient of an origami magic ball in a wind tunnel. Through dimensional analysis, the scenario where the robot swims underwater is equivalently transferred to the situation when it is in the wind tunnel. With experiments, we have collected and analyzed the drag force data. It is concluded that the drag coefficient of the magic ball increases from around 0.64 to 1.26 as it transforms from a slim ellipsoidal shape to an oblate spherical shape. Additionally, three different magic balls produce increases in the drag coefficient of between 57% and 86% on average compared to the smooth geometries of the same size and aspect ratio. The results will be useful in future designs of robots using waterbomb origami in fluidic environments. 
    more » « less
  3. This study presents the first 3D two-way coupled fluid structure interaction (FSI) simulation of a hybrid anechoic wind tunnel (HAWT) test section with modeling all important effects, such as turbulence, Kevlar wall porosity and deflection, and reveals for the first time the complete 3D flow structure associated with a lifting model placed into a HAWT. The Kevlar deflections are captured using finite element analysis (FEA) with shell elements operated under a membrane condition. Three-dimensional RANS CFD simulations are used to resolve the flow field. Aerodynamic experimental results are available and are compared against the FSI results. Quantitatively, the pressure coefficients on the airfoil are in good agreement with experimental results. The lift coefficient was slightly underpredicted while the drag was overpredicted by the CFD simulations. The flow structure downstream of the airfoil showed good agreement with the experiments, particularly over the wind tunnel walls where the Kevlar windows interact with the flow field. A discrepancy between previous experimental observations and juncture flow-induced vortices at the ends of the airfoil is found to stem from the limited ability of turbulence models. The qualitative behavior of the flow, including airfoil pressures and cross-sectional flow structure is well captured in the CFD. From the structural side, the behavior of the Kevlar windows and the flow developing over them is closely related to the aerodynamic pressure field induced by the airfoil. The Kevlar displacement and the transpiration velocity across the material is dominated by flow blockage effects, generated aerodynamic lift, and the wake of the airfoil. The airfoil wake increases the Kevlar window displacement, which was previously not resolved by two-dimensional panel-method simulations. The static pressure distribution over the Kevlar windows is symmetrical about the tunnel mid-height, confirming a dominantly two-dimensional flow field. 
    more » « less
  4. The accretion of ice on the surface of a wind turbine blade causes a drastic reduction in the aerodynamic performance and as a result, the power output, in addition to posing a safety hazard. To quantify this phenomenon, an experimental study was conducted in the Iowa State University Icing Research Tunnel (ISU-IRT) to understand the dynamic ice accretion process and resultant aerodynamic performance degradation specifically experienced by offshore wind turbines at higher Liquid Water Content (LWC) levels. Four different LWC values were tested for both glaze and rime ice conditions each, to cover the possible spectrum of typical icing conditions. A high-speed imaging camera was used to capture the dynamic ice accretion process, while a Digital Image Projection (DIP) technique was used to perform the 3D qualification of the ice accretion characteristics. Two highly sensitive multi-axis force and moment transducers were used to measure the lift and drag forces acting upon the airfoil. The lift force was found to decrease, and the drag force was found to increase with the formation of ice. The amount of change in the unsteady aerodynamic forces was found to depend on the ambient temperature, the LWC, as well as the accreted ice structure. 
    more » « less
  5. Abstract Data-driven generative design (DDGD) methods utilize deep neural networks to create novel designs based on existing data. The structure-aware DDGD method can handle complex geometries and automate the assembly of separate components into systems, showing promise in facilitating creative designs. However, determining the appropriate vectorized design representation (VDR) to evaluate 3D shapes generated from the structure-aware DDGD model remains largely unexplored. To that end, we conducted a comparative analysis of surrogate models’ performance in predicting the engineering performance of 3D shapes using VDRs from two sources: the trained latent space of structure-aware DDGD models encoding structural and geometric information and an embedding method encoding only geometric information. We conducted two case studies: one involving 3D car models focusing on drag coefficients and the other involving 3D aircraft models considering both drag and lift coefficients. Our results demonstrate that using latent vectors as VDRs can significantly deteriorate surrogate models’ predictions. Moreover, increasing the dimensionality of the VDRs in the embedding method may not necessarily improve the prediction, especially when the VDRs contain more information irrelevant to the engineering performance. Therefore, when selecting VDRs for surrogate modeling, the latent vectors obtained from training structure-aware DDGD models must be used with caution, although they are more accessible once training is complete. The underlying physics associated with the engineering performance should be paid attention. This paper provides empirical evidence for the effectiveness of different types of VDRs of structure-aware DDGD for surrogate modeling, thus facilitating the construction of better surrogate models for AI-generated designs. 
    more » « less