Machine learning deployment on edge devices has faced challenges such as computational costs and privacy issues. Membership inference attack (MIA) refers to the attack where the adversary aims to infer whether a data sample belongs to the training set. In other words, user data privacy might be compromised by MIA from a well-trained model. Therefore, it is vital to have defense mechanisms in place to protect training data, especially in privacy-sensitive applications such as healthcare. This paper exploits the implications of quantization on privacy leakage and proposes a novel quantization method that enhances the resistance of a neural network against MIA. Recent studies have shown that model quantization leads to resistance against membership inference attacks. Existing quantization approaches primarily prioritize performance and energy efficiency; we propose a quantization framework with the main objective of boosting the resistance against membership inference attacks. Unlike conventional quantization methods whose primary objectives are compression or increased speed, our proposed quantization aims to provide defense against MIA. We evaluate the effectiveness of our methods on various popular benchmark datasets and model architectures. All popular evaluation metrics, including precision, recall, and F1-score, show improvement when compared to the full bitwidth model. For example, for ResNet on Cifar10, our experimental results show that our algorithm can reduce the attack accuracy of MIA by 14%, the true positive rate by 37%, and F1-score of members by 39% compared to the full bitwidth network. Here, reduction in true positive rate means the attacker will not be able to identify the training dataset members, which is the main goal of the MIA. 
                        more » 
                        « less   
                    This content will become publicly available on January 1, 2026
                            
                            A Comprehensive Study of Privacy Risks in Curriculum Learning
                        
                    
    
            Training a machine learning model with data following a meaningful order, i.e., from easy to hard, has been proven to be effective in accelerating the training process and achieving better model performance. The key enabling technique is curriculum learning (CL), which has seen great success and has been deployed in areas like image and text classification. Yet, how CL affects the privacy of machine learning is unclear. Given that CL changes the way a model memorizes the training data, its influence on data privacy needs to be thoroughly evaluated. To fill this knowledge gap, we perform the first study and leverage membership inference attack (MIA) and attribute inference attack (AIA) as two vectors to quantify the privacy leakage caused by CL. Our evaluation of 9 real-world datasets with attack methods (NN-based, metric-based, label-only MIA, and NN-based AIA) revealed new insights about CL. First, MIA becomes slightly more effective when CL is applied, but the impact is much more prominent to a subset of training samples ranked as difficult. Second, a model trained under CL is less vulnerable under AIA, compared to MIA. Third, the existing defense techniques like MemGuard and MixupMMD are not effective under CL. Finally, based on our insights into CL, we propose a new MIA, termed Diff-Cali, which exploits the difficulty scores for result calibration and is demonstrated to be effective against all CL methods and the normal training method. With this study, we hope to draw the community's attention to the unintended privacy risks of emerging machine-learning techniques and develop new attack benchmarks and defense solutions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2220434
- PAR ID:
- 10637160
- Publisher / Repository:
- PETS
- Date Published:
- Journal Name:
- Proceedings on Privacy Enhancing Technologies
- Volume:
- 2025
- Issue:
- 1
- ISSN:
- 2299-0984
- Page Range / eLocation ID:
- 613 to 631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract—A distribution inference attack aims to infer statistical properties of data used to train machine learning models. These attacks are sometimes surprisingly potent, but the factors that impact distribution inference risk are not well understood and demonstrated attacks often rely on strong and unrealistic assumptions such as full knowledge of training environments even in supposedly black-box threat scenarios. To improve understanding of distribution inference risks, we develop a new black-box attack that even outperforms the best known white-box attack in most settings. Using this new attack, we evaluate distribution inference risk while relaxing a variety of assumptions about the adversary’s knowledge under black-box access, like known model architectures and label-only access. Finally, we evaluate the effectiveness of previously proposed defenses and introduce new defenses. We find that although noise-based defenses appear to be ineffective, a simple re-sampling defense can be highly effective. Imore » « less
- 
            Explainability is increasingly recognized as an enabling technology for the broader adoption of machine learning (ML), particularly for safety-critical applications. This has given rise to explainable ML, which seeks to enhance the explainability of neural networks through the use of explanators. Yet, the pursuit for better explainability inadvertently leads to increased security and privacy risks. While there has been considerable research into the security risks of explainable ML, its potential privacy risks remain under-explored. To bridge this gap, we present a systematic study of privacy risks in explainable ML through the lens of membership inference. Building on the observation that, besides the accuracy of the model, robustness also exhibits observable differences among member samples and non-member samples, we develop a new membership inference attack. This attack extracts additional membership features from changes in model confidence under different levels of perturbations guided by the importance highlighted by the attribution maps in the explanators. Intuitively, perturbing important features generally results in a bigger loss in confidence for member samples. Using the member-non-member differences in both model performance and robustness, an attack model is trained to distinguish the membership. We evaluated our approach with seven popular explanators across various benchmark models and datasets. Our attack demonstrates there is non-trivial privacy leakage in current explainable ML methods. Furthermore, such leakage issue persists even if the attacker lacks the knowledge of training datasets or target model architectures. Lastly, we also found existing model and output-based defense mechanisms are not effective in mitigating this new attack.more » « less
- 
            null (Ed.)We investigate a new method for injecting backdoors into machine learning models, based on compromising the loss-value computation in the model-training code. We use it to demonstrate new classes of backdoors strictly more powerful than those in the prior literature: single-pixel and physical backdoors in ImageNet models, backdoors that switch the model to a covert, privacy-violating task, and backdoors that do not require inference-time input modifications. Our attack is blind: the attacker cannot modify the training data, nor observe the execution of his code, nor access the resulting model. The attack code creates poisoned training inputs "on the fly," as the model is training, and uses multi-objective optimization to achieve high accuracy on both the main and backdoor tasks. We show how a blind attack can evade any known defense and propose new ones.more » « less
- 
            The large model size, high computational operations, and vulnerability against membership inference attack (MIA) have impeded deep learning or deep neural networks (DNNs) popularity, especially on mobile devices. To address the challenge, we envision that the weight pruning technique will help DNNs against MIA while reducing model storage and computational operation. In this work, we propose a pruning algorithm, and we show that the proposed algorithm can find a subnetwork that can prevent privacy leakage from MIA and achieves competitive accuracy with the original DNNs. We also verify our theoretical insights with experiments. Our experimental results illustrate that the attack accuracy using model compression is up to 13.6% and 10% lower than that of the baseline and Min-Max game, accordingly.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
