skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 14, 2026

Title: Synthesis of Leiodolide A Macrolactone
ABSTRACT: A convergent route toward the synthesis of leiodolide A (1) is described. Our studies explore reactions of the indium chloride-induced transmetallation of allylic stannane 32 for nucleophilic addition with nonracemic aldehyde 15. The stereoselective formation of the all-syn stereotriad was rationalized by in situ isomerization to produce the Z-allylindium reagent for subsequent anti-Felkin addition. The inversion of C17 stereochemistry led to an effective -allyl Stille cross cou-pling utilizing Z-alkenylstannane 11b. The Horner–Wadsworth–Emmons reaction provides macrolactone 37 which exhibits discrepancies as compared to reported NMR data for purported leiodolide A.  more » « less
Award ID(s):
2102587
PAR ID:
10637320
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Organic Letters
Volume:
27
Issue:
10
ISSN:
1523-7060
Page Range / eLocation ID:
2284 to 2288
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In an extension of our studies on low-temperature rearrangements of 1-alkynyl ethers, we describe herein the [3,3]-sigmatropic rearrangement of in situ formed propargyl alkynyl ethers to allenyl ketenes, which furnish complex tert -butyl-(2 E ,4 Z )-dienoates 2 in good yields upon tert -butanol addition. Similarly, sigmatropic rearrangements of in situ formed propargyl lithioalkynyl ethers yield methyl-(2 Z ,4 Z )-dienoates 4 upon methanol addition or unsaturated lactones 6 upon aldehyde or ketone addition to the allenyl ynolate intermediate. 
    more » « less
  2. Abstract Because internal alkenes are more challenging synthetic targets than terminal alkenes, metal‐catalyzed olefin mono‐transposition (i.e., positional isomerization) approaches have emerged to afford valuableE‐ orZ‐internal alkenes from their complementary terminal alkene feedstocks. However, the applicability of these methods has been hampered by lack of generality, commercial availability of precatalysts, and scalability. Here, we report a nickel‐catalyzed platform for the stereodivergentE/Z‐selective synthesis of internal alkenes at room temperature. Commercial reagents enable this one‐carbon transposition of terminal alkenes to valuableE‐ orZ‐internal alkenes via a Ni−H‐mediated insertion/elimination mechanism. Though the mechanistic regime is the same in both systems, the underlying pathways that lead to each of the active catalysts are distinct, with theZ‐selective catalyst forming from comproportionation of an oxidative addition complex followed by oxidative addition with substrate and theE‐selective catalyst forming from protonation of the metal by the trialkylphosphonium salt additive. In each case, ligand sterics and denticity control stereochemistry and prevent over‐isomerization. 
    more » « less
  3. A<sc>bstract</sc> We explore a large class of correlation measures called theα−zRényi mutual informations (RMIs). Unlike the commonly used notion of RMI involving linear combinations of Rényi entropies, theα−zRMIs are positive semi-definite and monotonically decreasing under local quantum operations, making them sensible measures of total (quantum and classical) correlations. This follows from their descendance from Rényi relative entropies. In addition to upper bounding connected correlation functions between subsystems, we prove the much stronger statement that for certain values ofαandz, theα−zRMIs also lower bound certain connected correlation functions. We develop an easily implementable replica trick which enables us to compute theα−zRMIs in a variety of many-body systems including conformal field theories, free fermions, random tensor networks, and holography. 
    more » « less
  4. ABSTRACT We discuss the spectral energy distributions and physical properties of six galaxies whose photometric redshifts suggest they lie beyond a redshift z ≃ 9. Each was selected on account of a prominent excess seen in the Spitzer/IRAC 4.5 $$\mu$$m band which, for a redshift above z = 9.0, likely indicates the presence of a rest-frame Balmer break and a stellar component that formed earlier than a redshift z ≃ 10. In addition to constraining the earlier star formation activity on the basis of fits using stellar population models with BAGPIPES, we have undertaken the necessary, but challenging, follow-up spectroscopy for each candidate using various combinations of Keck/MOSFIRE, VLT/X-shooter, Gemini/FLAMINGOS2, and ALMA. Based on either Lyman-α or [O iii] 88 $$\mu$$m emission, we determine a convincing redshift of z = 8.78 for GN-z-10-3 and a likely redshift of z = 9.28 for the lensed galaxy MACS0416-JD. For GN-z9-1, we conclude the case remains promising for a source beyond z ≃ 9. Together with earlier spectroscopic data for MACS1149-JD1, our analysis of this enlarged sample provides further support for a cosmic star formation history extending beyond redshifts z ≃ 10. We use our best-fitting stellar population models to reconstruct the past rest-frame UV luminosities of our sources and discuss the implications for tracing earlier progenitors of such systems with the James Webb Space Telescope. 
    more » « less
  5. Abstract The production of heavy neutral mass resonances, $$\text {Z}^{\prime }$$ Z ′ , has been widely studied theoretically and experimentally. Although the nature, mass, couplings, and associated quantum numbers of this hypothetical particle are yet to be determined, current LHC experimental results have set strong constraints assuming the simplest beyond Standard Model (SM) hypotheses. We present a new feasibility study on the production of a $$\text {Z}^{\prime }$$ Z ′ boson at the LHC, with family non-universal couplings, considering proton–proton collisions at $$\sqrt{s} = 13$$ s = 13 and 14 TeV. Such a hypothesis is well motivated theoretically and it can explain observed differences between SM predictions and experimental results, as well as being a useful tool to further probe recent results in searches for new physics considering non-universal fermion couplings. We work under two simplified phenomenological frameworks where the $$\textrm{Z}^{\prime }$$ Z ′ masses and couplings to the SM particles are free parameters, and consider final states of the $$\text {Z}^{\prime }$$ Z ′ decaying to a pair of $$\textrm{b}$$ b quarks. The analysis is performed using machine learning techniques to maximize the sensitivity. Despite being a well motivated physics case in its own merit, such scenarios have not been fully considered in ongoing searches at the LHC. We note the proposed search methodology can be a key mode for discovery over a large mass range, including low masses, traditionally considered difficult due to experimental constrains. In addition, the proposed search is complementary to existing strategies. 
    more » « less