Smartphones are ubiquitous in high schools across the US, but students rarely learn about the complex world of elements and materials beneath their shiny exteriors. Educators can bridge the gap between the abstract concept of smartphone elements and the real-world geography of their origin and impact by integrating ArcGIS geospatial software into their curriculum. A team of researchers has been working with high school teachers to infuse geospatial concepts and technologies into their teaching. One project involved a teacher using GIS to revisit his approach to teaching the periodic table: he would have his students investigate the global origins of smartphone components. This approach equipped students with essential knowledge about the materials that power their daily lives and nurtured critical thinking skills and an awareness of the environmental and ethical dimensions of technology consumption. This paper includes a description of the project and how geospatial technology was utilized, as well as a discussion on the implications and future research in this area.
more »
« less
Cultivating geo-sustainable mindset in high school chemistry students using geographic information systems.
While smartphones are familiar in high schools, their intricate material composition and far-reaching geographical footprint remain largely unexplored. This research explores how educators can leverage ArcGIS, a geospatial software tool, to bridge the gap between theoretical understanding and real-world consequences. The paper details a collaborative project between researchers and teachers to integrate location-based learning into the curriculum. One such project involved a teacher using geographic information systems to guide students in exploring the global impact of smartphones. This approach fostered critical thinking and environmental awareness, equipping students with vital knowledge about the materials behind everyday technology. By harnessing the power of geospatial tools, educators can cultivate a generation of "geo-sustainable" thinkers prepared to navigate the complex life cycle of digital devices – from extraction to disposal – in an environmentally responsible manner. This paper delves into the project methodology, the application of geospatial technology, and the broader implications for future research in this domain.
more »
« less
- Award ID(s):
- 1949393
- PAR ID:
- 10637878
- Editor(s):
- Cherner, T; Blankenship, R
- Publisher / Repository:
- Association for the Advancement of Computing in Education
- Date Published:
- Journal Name:
- Research Highlights in Technology and Teacher Education
- Volume:
- 1
- Issue:
- 1
- ISSN:
- 978-1-939797-78-0
- Page Range / eLocation ID:
- 25-37
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The session will share the University of North Georgia’s Applying Geospatial and Engineering Technology (AGET) project experiences and developments associated with modular and stackable credentials in land surveying and geospatial engineering technology. The project developed and implemented a new Land Surveying Certificate and Associate of Science pathway in Geospatial Engineering Technology containing several tracks with modular and stackable credentialing options for students.more » « less
-
STEM education is often disconnected from innovation and design, where students self-identify as solely scientists, artists, or technophiles, but rarely see the connection between the disciplines. The inclusion of arts (A) in STEM education (STEAM) offers an educational approach where students see how subjects are integrated through learning experiences that apply to everyday, developing personal connections and becoming motivated learners who understand how skills from each subject are needed for future careers. This project addresses both the disconnect between science, design, and technology and how high school students can benefit from innovative learning experiences in plant science that integrate these disciplines while gaining invaluable skills for future STEM careers. We used the Science-Art-Design-Technology (SADT) pedagogical approach, characterized by its project-based learning that relies on student teamwork and facilitation by educators. This approach was applied through a STEAM educational 3D plant module where teams: 1) investigated plants under research at a plant science research center, 2) designed and created 3D models of those plants, 3) experienced the application of 3D modeling in augmented and virtual reality platforms, and 4) disseminated project results. We used a mixed-method approach using qualitative and quantitative research methods to assess the impact of the 3D modeling module on students’ understanding of the intersection of art and design with science, learning and skills gains, and interests in STEAM subjects and careers. A total of 160 students from eight educational institutions (schools and informal programs) implemented the module. Student reflection questions revealed that students see art and design playing a role in science mainly by facilitating communication and further understanding and fostering new ideas. They also see science influencing art and design through the artistic creation process. The students acknowledged learning STEAM content and applications associated with plant science, 3D modeling, and augmented and virtual reality. They also acknowledged gaining research skills and soft skills such as collaboration and communication. Students also increased their interest in STEAM subjects and careers, particularly associated with plant science. The SADT approach, exemplified by the 3D plant module, effectively integrates science, art, design, and technology, enhancing student literacy in these fields, and providing students with essential 21st century competencies. The module's flexibility and experiential learning opportunities benefit students and educators, promoting interdisciplinary learning and interest in STEAM subjects and careers. This innovative approach is a valuable tool for educators, inspiring new ways of teaching and learning in STEAM education.more » « less
-
This project addresses the disconnect between science, design, and technology and how high school students can benefit from innovative learning experiences in plant science that integrate these disciplines while gaining interest in and skills for future STEM careers. We created a project-based 3D modeling learning module with educators as facilitators and students working in collaborative teams of self-identified science, technophile, and art students. Students created 3D models of plants under research at the Donald Danforth Plant Science Center and learned about the applications of 3D modeling in augmented and virtual reality platforms. They also disseminated their project results through handouts and presentations. We used a mixed-methods approach to assess the impact of implementing this module on students’ learning and interests in STEAM subjects and careers. We found that students are more aware of the intersection of art and design with science and gained literacy in plant science, design, and technology. The students also gained 21st century skills such as collaboration, communication, creative thinking, and problem-solving and showed more interest in STEAM subjects and careers. This project contributes to the body of knowledge on theory, best practices, and practical technological applications in STEAM education.more » « less
-
Leaders in industry and government are calling for increasing innovation in STEM fields to maintain the nation's economic competitiveness [15]. Solving today's complex challenges will require cooperation among experts from many fields. Successful leaders must harness the diverse capabilities of teams composed of these experts and be technically skilled. Undergraduate engineering students can fill this need by learning how to be effective leaders during their formation as engineers. Unfortunately, many engineering students graduate with little development of leadership skills; engineering educators do not currently have a sufficient understanding of how engineering students develop into leaders. This NSF ECE supported project seeks to improve educators’ understanding of the interaction between leadership and engineering identities in the formation of undergraduate engineers. This work postulates that a cohesive engineering leadership identity should exist at the intersection of engineering and leadership identities. Now entering its second year the project is wrapping up its quantitative phase and is beginning the qualitative phase of investigation. This paper discusses the process of developing the qualitative research protocols used to explore identity formation in groups of undergraduate engineers at three different campuses. The discussion shows the formation of the protocol using prior work in leadership and engineering identity constructs from both this project and the literature. The protocol development, methods, and findings from early interviews are presented. Initial findings suggest several factors are important to engineering educators interested in developing engineers who are ready to lead. The findings include evidence of some level of conflict between engineering identity and leadership identity as well as further evidence of engineering students’ compartmentalization of leadership as outside of engineering. In addition, this paper includes the learning outcomes of three REU students who joined the project to assist with the development of the qualitative protocol. The REU students made significant contributions to initial data collection as participants and observers. The REU students were the lead authors of this paper.more » « less
An official website of the United States government

