skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cocaine diminishes functional network robustness and destabilizes the energy landscape of neuronal activity in the medial prefrontal cortex
Abstract We present analysis of neuronal activity recordings from a subset of neurons in the medial prefrontal cortex of rats before and after the administration of cocaine. Using an underlying modern Hopfield model as a description for the neuronal network, combined with a machine learning approach, we compute the underlying functional connectivity of the neuronal network. We find that the functional connectivity changes after the administration of cocaine with both functional-excitatory and functional-inhibitory neurons being affected. Using conventional network analysis, we find that the diameter of the graph, or the shortest length between the two most distant nodes, increases with cocaine, suggesting that the neuronal network is less robust. We also find that the betweenness centrality scores for several of the functional-excitatory and functional-inhibitory neurons decrease significantly, while other scores remain essentially unchanged, to also suggest that the neuronal network is less robust. Finally, we study the distribution of neuronal activity and relate it to energy to find that cocaine drives the neuronal network towards destabilization in the energy landscape of neuronal activation. While this destabilization is presumably temporary given one administration of cocaine, perhaps this initial destabilization indicates a transition towards a new stable state with repeated cocaine administration. However, such analyses are useful more generally to understand how neuronal networks respond to perturbations.  more » « less
Award ID(s):
2204312
PAR ID:
10637955
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
PNAS Nexus
Volume:
3
Issue:
3
ISSN:
2752-6542
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mammalian cortex features a vast diversity of neuronal cell types, each with characteristic anatomical, molecular and functional properties. Synaptic connectivity powerfully shapes how each cell type participates in the cortical circuit, but mapping connectivity rules at the resolution of distinct cell types remains difficult. Here, we used millimeter-scale volumetric electron microscopy1to investigate the connectivity of all inhibitory neurons across a densely-segmented neuronal population of 1352 cells spanning all layers of mouse visual cortex, producing a wiring diagram of inhibitory connections with more than 70,000 synapses. Taking a data-driven approach inspired by classical neuroanatomy, we classified inhibitory neurons based on the relative targeting of dendritic compartments and other inhibitory cells and developed a novel classification of excitatory neurons based on the morphological and synaptic input properties. The synaptic connectivity between inhibitory cells revealed a novel class of disinhibitory specialist targeting basket cells, in addition to familiar subclasses. Analysis of the inhibitory connectivity onto excitatory neurons found widespread specificity, with many interneurons exhibiting differential targeting of certain subpopulations spatially intermingled with other potential targets. Inhibitory targeting was organized into “motif groups,” diverse sets of cells that collectively target both perisomatic and dendritic compartments of the same excitatory targets. Collectively, our analysis identified new organizing principles for cortical inhibition and will serve as a foundation for linking modern multimodal neuronal atlases with the cortical wiring diagram. 
    more » « less
  2. The notion that a neuron transmits the same set of neurotransmitters at all of its post-synaptic connections, typically known as Dale's law, is well supported throughout the majority of the brain and is assumed in almost all theoretical studies investigating the mechanisms for computation in neuronal networks. Dale's law has numerous functional implications in fundamental sensory processing and decision-making tasks, and it plays a key role in the current understanding of the structure-function relationship in the brain. However, since exceptions to Dale's law have been discovered for certain neurons and because other biological systems with complex network structure incorporate individual units that send both positive and negative feedback signals, we investigate the functional implications of network model dynamics that violate Dale's law by allowing each neuron to send out both excitatory and inhibitory signals to its neighbors. We show how balanced network dynamics, in which large excitatory and inhibitory inputs are dynamically adjusted such that input fluctuations produce irregular firing events, are theoretically preserved for a single population of neurons violating Dale's law. We further leverage this single-population network model in the context of two competing pools of neurons to demonstrate that effective decision-making dynamics are also produced, agreeing with experimental observations from honeybee dynamics in selecting a food source and artificial neural networks trained in optimal selection. Through direct comparison with the classical two-population balanced neuronal network, we argue that the one-population network demonstrates more robust balanced activity for systems with less computational units, such as honeybee colonies, whereas the two-population network exhibits a more rapid response to temporal variations in network inputs, as required by the brain. We expect this study will shed light on the role of neurons violating Dale's law found in experiment as well as shared design principles across biological systems that perform complex computations. 
    more » « less
  3. Abstract Humans and other primates have specialized visual pathways composed of interconnected cortical areas. The input area V1 contains neurons that encode basic visual features, whereas downstream in the lateral prefrontal cortex (LPFC) neurons acquire tuning for novel complex feature associations. It has been assumed that each cortical area is composed of repeatable neuronal subtypes, and variations in synaptic strength and connectivity patterns underlie functional specialization. Here we test the hypothesis that diversity in the intrinsic make-up of single neurons contributes to area specialization along the visual pathways. We measured morphological and electrophysiological properties of single neurons in areas V1 and LPFC of marmosets. Excitatory neurons in LPFC were larger, less excitable, and fired broader spikes than V1 neurons. Some inhibitory fast spiking interneurons in the LPFC had longer axons and fired spikes with longer latencies and a more depolarized action potential trough than in V1. Intrinsic bursting was found in subpopulations of both excitatory and inhibitory LPFC but not V1 neurons. The latter may favour temporal summation of spikes and therefore enhanced synaptic plasticity in LPFC relative to V1. Our results show that specialization within the primate visual system permeates the most basic processing level, the single neuron. 
    more » « less
  4. Summary The neocortex is one of the most critical structures that makes us human, and it is involved in a variety of cognitive functions from perception to sensory integration and motor control. Composed of repeated modules, or microcircuits, the neocortex relies on distinct cell types as its fundamental building blocks. Despite significant progress in characterizing these cell types1–5, an understanding of the complete synaptic partners associated with individual excitatory cell types remain elusive. Here, we investigate the connectivity of arguably the most well recognized and studied excitatory neuron in the neocortex: the thick tufted layer 5 pyramidal cell6–10also known as extra telencephalic (ET)11neurons. Although the synaptic interactions of ET neurons have been extensively explored, a comprehensive characterization of their local connectivity remains lacking. To address this knowledge gap, we leveraged a 1 mm3electron microscopic (EM) dataset. We found that ET neurons primarily establish connections with inhibitory cells in their immediate vicinity. However, when they extend their axons to other cortical regions, they tend to connect more with excitatory cells. We also find that the inhibitory cells targeted by ET neurons are a specific group of cell types, and they preferentially inhibit ET cells. Finally, we observed that the most common excitatory targets of ET neurons are layer 5 IT neurons and layer 6 pyramidal cells, whereas synapses with other ET neurons are not as common. These findings challenge current views of the connectivity of ET neurons and suggest a circuit design that involves local competition among ET neurons and collaboration with other types of excitatory cells. Our results also highlight a specific circuit pattern where a subclass of excitatory cells forms a network with specific inhibitory cell types, offering a framework for exploring the connectivity of other types of excitatory cells. 
    more » « less
  5. null (Ed.)
    In biological brains, recurrent connections play a crucial role in cortical computation, modulation of network dynamics, and communication. However, in recurrent spiking neural networks (SNNs), recurrence is mostly constructed by random connections. How excitatory and inhibitory recurrent connections affect network responses and what kinds of connectivity benefit learning performance is still obscure. In this work, we propose a novel recurrent structure called the Laterally-Inhibited Self-Recurrent Unit (LISR), which consists of one excitatory neuron with a self-recurrent connection wired together with an inhibitory neuron through excitatory and inhibitory synapses. The self-recurrent connection of the excitatory neuron mitigates the information loss caused by the firing-and-resetting mechanism and maintains the long-term neuronal memory. The lateral inhibition from the inhibitory neuron to the corresponding excitatory neuron, on the one hand, adjusts the firing activity of the latter. On the other hand, it plays as a forget gate to clear the memory of the excitatory neuron. Based on speech and image datasets commonly used in neuromorphic computing, RSNNs based on the proposed LISR improve performance significantly by up to 9.26% over feedforward SNNs trained by a state-of-the-art backpropagation method with similar computational costs. 
    more » « less