skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 3, 2026

Title: Étale structures and the Joyal–Tierney representation theorem in countable model theory
An étale structure over a topological space X is a continuous family of structures (in some first-order language) indexed over X. We give an exposition of this fundamental concept from sheaf theory and its relevance to countable model theory and invariant descriptive set theory. We show that many classical aspects of spaces of countable models can be naturally framed and generalized in the context of étale structures, including the Lopez-Escobar theorem on invariant Borel sets, an omitting types theorem, and various characterizations of Scott rank. We also present and prove the countable version of the Joyal–Tierney representation theorem, which states that the isomorphism groupoid of an étale structure determines its theory up to bi-interpretability; and we explain how special cases of this theorem recover several recent results in the literature on groupoids of models and functors between them.  more » « less
Award ID(s):
2224709
PAR ID:
10638115
Author(s) / Creator(s):
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
The Bulletin of Symbolic Logic
ISSN:
1079-8986
Page Range / eLocation ID:
1 to 43
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We continue the study of the theories of Baldwin–Shi hypergraphs from [5]. Restricting our attention to when the rank δ is rational valued, we show that each countable model of the theory of a given Baldwin–Shi hypergraph is isomorphic to a generic structure built from some suitable subclass of the original class used in the construction. We introduce a notion of dimension for a model and show that there is a an elementary chain $$\left\{ {\mathfrak{M}_\beta :\beta \leqslant \omega } \right\}$$ of countable models of the theory of a fixed Baldwin–Shi hypergraph with $$\mathfrak{M}_\beta \preccurlyeq \mathfrak{M}_\gamma $$ if and only if the dimension of $$\mathfrak{M}_\beta $$ is at most the dimension of $$\mathfrak{M}_\gamma $$ and that each countable model is isomorphic to some $$\mathfrak{M}_\beta $$ . We also study the regular types that appear in these theories and show that the dimension of a model is determined by a particular regular type. Further, drawing on a large body of work, we use these structures to give an example of a pseudofinite, ω -stable theory with a nonlocally modular regular type, answering a question of Pillay in [11]. 
    more » « less
  2. Abstract The goal of this paper is to generalise, refine and improve results on large intersections from [2, 8]. We show that if G is a countable discrete abelian group and $$\varphi , \psi : G \to G$$ are homomorphisms, such that at least two of the three subgroups $$\varphi (G)$$ , $$\psi (G)$$ and $$(\psi -\varphi )(G)$$ have finite index in G , then $$\{\varphi , \psi \}$$ has the large intersections property . That is, for any ergodic measure preserving system $$\textbf {X}=(X,\mathcal {X},\mu ,(T_g)_{g\in G})$$ , any $$A\in \mathcal {X}$$ and any $$\varepsilon>0$$ , the set $$ \begin{align*} \{g\in G : \mu(A\cap T_{\varphi(g)}^{-1} A \cap T_{\psi(g)}^{-1} A)>\mu(A)^3-\varepsilon\} \end{align*} $$ is syndetic (Theorem 1.11). Moreover, in the special case where $$\varphi (g)=ag$$ and $$\psi (g)=bg$$ for $$a,b\in \mathbb {Z}$$ , we show that we only need one of the groups $aG$ , $bG$ or $(b-a)G$ to be of finite index in G (Theorem 1.13), and we show that the property fails, in general, if all three groups are of infinite index (Theorem 1.14). One particularly interesting case is where $$G=(\mathbb {Q}_{>0},\cdot )$$ and $$\varphi (g)=g$$ , $$\psi (g)=g^2$$ , which leads to a multiplicative version of the Khintchine-type recurrence result in [8]. We also completely characterise the pairs of homomorphisms $$\varphi ,\psi $$ that have the large intersections property when $$G = {{\mathbb Z}}^2$$ . The proofs of our main results rely on analysis of the structure of the universal characteristic factor for the multiple ergodic averages $$ \begin{align*} \frac{1}{|\Phi_N|} \sum_{g\in \Phi_N}T_{\varphi(g)}f_1\cdot T_{\psi(g)} f_2. \end{align*} $$ In the case where G is finitely generated, the characteristic factor for such averages is the Kronecker factor . In this paper, we study actions of groups that are not necessarily finitely generated, showing, in particular, that, by passing to an extension of $$\textbf {X}$$ , one can describe the characteristic factor in terms of the Conze–Lesigne factor and the $$\sigma $$ -algebras of $$\varphi (G)$$ and $$\psi (G)$$ invariant functions (Theorem 4.10). 
    more » « less
  3. null (Ed.)
    We show that if V has a proper class ofWoodin cardinals, a strong cardinal, and a generically universally Baire iteration strategy (as defined in the paper) then Sealing holds after collapsing the successor of the least strong cardinal to be countable. This result is complementary to other work by the authors where it is shown that Sealing holds in a generic extension of a certain minimal universe. The current theorem is more general in that no minimality assumption is needed. A corollary of the main theorem is that Sealing is consistent relative to the existence of a Woodin cardinal which is a limit of Woodin cardinals. This improves significantly on the first consistency of Sealing obtained by W.H. Woodin. The Largest Suslin Axiom (LSA) is a determinacy axiom isolated byWoodin. It asserts that the largest Suslin cardinal is inaccessible for ordinal definable bijections. Let LSA-over-uB be the statement that in all (set) generic extensions there is a model of LSA whose Suslin, co-Suslin sets are the universally Baire sets. The other main result of the paper shows that assuming V has a proper class of inaccessible cardinals which are limit of Woodin cardinals, a strong cardinal, and a generically universally Baire iteration strategy, in the universe V [g], where g is V -generic for the collapse of the successor of the least strong cardinal to be countable, the theory LSA-over-UB fails; this implies that LSA-over-UB is not equivalent to Sealing (over the base theory of V [g]). This is interesting and somewhat unexpected, in light of other work by the authors. Compare this result with Steel’s well-known theorem that “AD in L(R) holds in all generic extensions” is equivalent to “the theory of L(R) is sealed” in the presence of a proper class of measurable cardinals. 
    more » « less
  4. Baliaev, D; Smirnov, S (Ed.)
    This article highlights historical achievements in the partition theory of countable homogeneous relational structures, and presents recent work, current trends, and open problems. Exciting recent developments include new methods involving logic, topological Ramsey spaces, and category theory. The paper concentrates on big Ramsey degrees, presenting their essential structure where known and outlining areas for further development. Cognate areas, including infinite dimensional Ramsey theory of homogeneous structures and partition theory of uncountable structures are also discussed. 
    more » « less
  5. null (Ed.)
    Abstract We initiate the study of Schrödinger operators with ergodic potentials defined over circle map dynamics, in particular over circle diffeomorphisms. For analytic circle diffeomorphisms and a set of rotation numbers satisfying Yoccoz’s $${{\mathcal{H}}}$$ arithmetic condition, we discuss an extension of Avila’s global theory. We also give an abstract version and a short proof of a sharp Gordon-type theorem on the absence of eigenvalues for general potentials with repetitions. Coupled with the dynamical analysis, we obtain that, for every $$C^{1+BV}$$ circle diffeomorphism, with a super Liouville rotation number and an invariant measure $$\mu $$, and for $$\mu $$-almost all $$x\in{{\mathbb{T}}}^1$$, the corresponding Schrödinger operator has purely continuous spectrum for every Hölder continuous potential $$V$$. 
    more » « less