skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 26, 2026

Title: Spin-coated Ge–In–Se thin films: characterization and changes induced by visible and electron radiation in relation to indium content
The Ge–In–Se thin films were prepared in high optical qualityviaspin-coating and their surface was patterned using electron beam lithography and optical holography.  more » « less
Award ID(s):
2106457
PAR ID:
10638117
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Materials Advances
Volume:
6
Issue:
17
ISSN:
2633-5409
Page Range / eLocation ID:
6152 to 6161
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Selection rules are of vital importance in determining the basic optical properties of atoms, molecules and semiconductors. They provide general insights into the symmetry of the system and the nature of relevant electronic states. A two-dimensional electron gas in a magnetic field is a model system where optical transitions between Landau levels (LLs) are described by simple selection rules associated with the LL indexN. Here we examine the inter-LL optical transitions of high-quality bilayer graphene by photocurrent spectroscopy measurement. We observed valley-dependent optical transitions that violate the conventional selection rules Δ|N| = ± 1. Moreover, we can tune the relative oscillator strength by tuning the bilayer graphene bandgap. Our findings provide insights into the interplay between magnetic field, band structure and many-body interactions in tunable semiconductor systems, and the experimental technique can be generalized to study symmetry-broken states and low energy magneto-optical properties of other nano and quantum materials. 
    more » « less
  2. We present an analytical and numerical study of electromagnetic modes in micro- and nano-fibers (MNFs) where the electric and magnetic fields of the modes are not necessarily orthogonal to each other. We first investigate these modes for different fiber structures including circular- and rectangular-core fibers as well as photonic crystal fibers. We then discuss two specific applications of these modes: (1) generation of hypothetical axions that are coupled to the electromagnetic fields through the dot product of electric and magnetic fields of a mode,E→⋅B→, and (2) a new type of optical trap (optical tweezers) for chiral atoms with magneto-electric cross coupling, where the confining potential again is proportional toE→⋅B→. 
    more » « less
  3. Abstract Objective.Optogenetics allows the manipulation of neural circuitsin vivowith high spatial and temporal precision. However, combining this precision with control over a significant portion of the brain is technologically challenging (especially in larger animal models).Approach.Here, we have developed, optimised, and testedin vivo, the Utah Optrode Array (UOA), an electrically addressable array of optical needles and interstitial sites illuminated by 181μLEDs and used to optogenetically stimulate the brain. The device is specifically designed for non-human primate studies.Main results.Thinning the combinedμLED and needle backplane of the device from 300μm to 230μm improved the efficiency of light delivery to tissue by 80%, allowing lowerμLED drive currents, which improved power management and thermal performance. The spatial selectivity of each site was also improved by integrating an optical interposer to reduce stray light emission. These improvements were achieved using an innovative fabrication method to create an anodically bonded glass/silicon substrate with through-silicon vias etched, forming an optical interposer. Optical modelling was used to demonstrate that the tip structure of the device had a major influence on the illumination pattern. The thermal performance was evaluated through a combination of modelling and experiment, in order to ensure that cortical tissue temperatures did not rise by more than 1 °C. The device was testedin vivoin the visual cortex of macaque expressing ChR2-tdTomato in cortical neurons.Significance.It was shown that the UOA produced the strongest optogenetic response in the region surrounding the needle tips, and that the extent of the optogenetic response matched the predicted illumination profile based on optical modelling—demonstrating the improved spatial selectivity resulting from the optical interposer approach. Furthermore, different needle illumination sites generated different patterns of low-frequency potential activity. 
    more » « less
  4. Abstract Optical second harmonic generation (SHG) is a nonlinear optical effect widely used for nonlinear optical microscopy and laser frequency conversion. Closed-form analytical solution of the nonlinear optical responses is essential for evaluating materials whose optical properties are unknown a priori. A recent open-source code, ♯SHAARP.si, can provide such closed form solutions for crystals with arbitrary symmetries, orientations, and anisotropic properties at asingleinterface. However, optical components are often in the form of slabs, thin films on substrates, and multilayer heterostructures with multiple reflections of both the fundamental and up to ten different SHG waves at each interface, adding significant complexity. Many approximations have therefore been employed in the existing analytical approaches, such as slowly varying approximation, weak reflection of the nonlinear polarization, transparent medium, high crystallographic symmetry, Kleinman symmetry, easy crystal orientation along a high-symmetry direction, phase matching conditions and negligible interference among nonlinear waves, which may lead to large errors in the reported material properties. To avoid these approximations, we have developed an open-source package named Second Harmonic Analysis of Anisotropic Rotational Polarimetry in Multilayers (♯SHAARP.ml). The reliability and accuracy are established by experimentally benchmarking with both the SHG polarimetry and Maker fringes using standard and commonly used nonlinear optical materials as well as twisted 2-dimensional heterostructures. 
    more » « less
  5. Abstract It is commonly believed that blazar jets are relativistic magnetized plasma outflows from supermassive black holes. One key question is how the jets dissipate magnetic energy to accelerate particles and drive powerful multiwavelength flares. Relativistic magnetic reconnection has been proposed as the primary plasma physical process in the blazar emission region. Recent numerical simulations have shown strong acceleration of nonthermal particles that may lead to multiwavelength flares. Nevertheless, previous works have not directly evaluatedγ-ray signatures from first-principles simulations. In this paper, we employ combined particle-in-cell and polarized radiation transfer simulations to study multiwavelength radiation and optical polarization signatures under the leptonic scenario from relativistic magnetic reconnection. We find harder-when-brighter trends in optical and Fermi-LATγ-ray bands as well as closely correlated optical andγ-ray flares. The swings in optical polarization angle are also accompanied byγ-ray flares with trivial time delays. Intriguingly, we find highly variable synchrotron self-Compton signatures due to inhomogeneous particle distributions during plasmoid mergers. This feature may result in fastγ-ray flares or orphanγ-ray flares under the leptonic scenario, complementary to the frequently considered minijet scenario. It may also imply neutrino emission with low secondary synchrotron flux under the hadronic scenario, if plasmoid mergers can accelerate protons to very high energy. 
    more » « less