skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fecal Biomarkers in Soils Record Landscape‐Scale Wild Herbivore Abundance
Abstract In Earth history, our understanding of how large‐bodied herbivores shape a variety of ecosystem processes is limited by the quality of paleoecological proxies for herbivore composition and abundance. Fecal stanols are lipids that can be produced by microbes within animal digestive systems and that could remedy this dearth of proxies. We used two multi‐decadal herbivore exclosures in Kruger National Park, South Africa, to constrain whether and how biomarker signatures preserve signals of herbivore abundance. Soil samples and dung counts were collected along transects across crests, mid‐slopes, and sodic sites inside and outside exclosures. Soils were analyzed for steroid (sterols and stanols) concentrations and distributions. We found that stanol concentrations were significantly greater in sodic soils outside exclosures, where herbivore dung densities were greatest. In contrast, sterol concentrations did not differ between treatments. Ratios of stanol isomers to sterols, which account for both compound degradation and source, increased strongly with herbivore dung counts. Finally, while herbivore species compositions influenced steroid distributions, total herbivore abundance was their strongest predictor. Further calibration is needed, but this work provides strong preliminary evidence that wild herbivore populations are quantitatively recorded by fecal biomarker distributions.  more » « less
Award ID(s):
2547017
PAR ID:
10638402
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
26
Issue:
9
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Khamesipour, Faham (Ed.)
    Molecular biomarkers preserved in lake sediments are increasingly used to develop records of past organism occurrence. When linked with traditional paleoecological methods, analysis of molecular biomarkers can yield new insights into the roles of herbivores and other animals in long-term ecosystem dynamics. We sought to determine whether fecal steroids in lake sediments could be used to reconstruct past ungulate use and dominant taxa in a small catchment in northern Yellowstone National Park. To do so, we characterized the fecal steroid profiles of a selection of North American ungulates historically present in the Yellowstone region (bison, elk, moose, mule deer, and pronghorn) and compared them with those of sediments from a small lake in the Yellowstone Northern Range. Analysis of a set of fecal steroids from herbivore dung (Δ5-sterols, 5α-stanols, 5β-stanols, epi5β-stanols, stanones, and bile acids) differentiated moose, pronghorn, and mule deer, whereas bison and elk were partially differentiated. Our results show that bison and/or elk were the primary ungulates in the watershed over the pastc. 2300 years. Fecal steroid influxes reached historically unprecedented levels during the early and middle 20thcentury, possibly indicating high local use by ungulates. Comparison of fecal steroid influxes with pollen and diatom data suggests that elevated ungulate presence may have contributed to decreased forage taxa (Poaceae,Artemisia, andSalix), relative to long-term averages, and possibly increased lake production. Our results reflect past change within a single watershed, and extending this approach to a network of sites could provide much-needed information on past herbivore communities, use, and environmental influences in Yellowstone National Park and elsewhere. 
    more » « less
  2. Abstract As fecal steroid methods increasingly are used by researchers to monitor the physiology of captive and wild populations, we need to expand our validation protocols to test the effects of procedural variation and to identify contamination by exogenous sources of steroid hormones. Mammalian carnivore feces often contain large amounts of hair from the prey they consume, which itself may contain high concentrations of hormones. In this study, we report first a validation of two steroid hormone antibodies, corticosterone and progesterone, to determine fecal concentrations of these hormones in wild spotted hyenas (Crocuta crocuta). Next, we expand on these standard validation protocols to test two additional metrics: (i) whether hair from consumed prey or (ii) the specific drying method (oven incubation vs. lyophilization) affect steroid hormone concentrations in feces. In the first biological validation for the progesterone antibody in this species, progesterone concentrations met our expectations: (i) concentrations of plasma and fecal progesterone were lowest in immature females, higher in lactating females, and highest in pregnant females; (ii) across pregnant females, fecal progesterone concentrations were highest during late pregnancy; and (iii) among lactating females, fecal progesterone concentrations were highest after parturition. Our additional validation experiments indicated that contamination with prey hair and drying method are hormone-specific. Although prey hair did not release hormones into samples during storage or extraction for either hormone, its presence appeared to “dilute” progesterone (but not corticosterone) measures indirectly by increasing the dry weight of samples. In addition, fecal progesterone, but not corticosterone, values were lower for lyophilized than for incubated samples. Therefore, in addition to the standard analytical and biological validation steps, additional methodological variables need to be tested whenever we measure fecal hormone concentrations, particularly from predatory mammals. 
    more » « less
  3. ABSTRACT Whistling thorn acacia (Acacia(Vachellia)drepanolobium) forms nearly monospecific stands among woody species in black cotton soils in East Africa arid highlands. The tree defends itself against large mammal herbivores with spinescence and symbiotic ants. While these defenses have been extensively studied, little is known about the extent to whichA. drepanolobiumdefense may benefit other plants growing in close association. We examined variation in herbaceous vegetation height, biomass, and composition between areas underneathA. drepanolobiumcanopies and the adjacent matrix in both fenced herbivore exclosures and unfenced areas. In unfenced areas, there was more tall herbaceous vegetation and biomass underneath tree canopies than away from tree canopies, while these differences were not significant in fenced exclosures. Both height and biomass of understory vegetation were negatively correlated withA. drepanolobiumcanopy height. Species richness was higher underneath tree canopies in both fenced and unfenced locations. In the unfenced locations, species evenness was lower underneath tree canopies than in the surrounding matrix, but the opposite was true in the fenced herbivore exclosures. The differences in herbaceous vegetation composition (Bray–Curtis dissimilarity index) between underneath tree and off tree locations were more pronounced in the unfenced areas than within the fenced herbivore exclosures. Our findings suggest that highly defended trees may moderate herbivore effects on herbaceous vegetation. To the extent that herbaceous vegetation underneath trees experiences protection from herbivory, such refugia microhabitats may serve as recolonization nuclei in attempts to restore chronically overgrazed systems. 
    more » « less
  4. Abstract Estimating spatiotemporal patterns of population density is a primary objective of wildlife monitoring programs. However, estimating density is challenging for species that are elusive and/or occur in habitats with limited visibility. In such situations, indirect measures (e.g., nests, dung) can serve as proxies for counts of individuals. Scientists have developed approaches to estimate population density using these “indirect count” data, although current methods do not adequately account for variation in sign production and spatial patterns of animal density. In this study, we describe a modified hierarchical distance sampling model that maximizes the information content of indirect count data using Bayesian inference. We apply our model to assess the status of chimpanzee and elephant populations using counts of nests and dung, respectively, which were collected along transects in 2007 and 2021 in western Uganda. Compared with conventional methods, our modeling framework produced more precise estimates of covariate effects on expected animal density by accounting for both long‐term and recent variations in animal abundance and enabled the estimation of the number of days that animal signs remained visible. We estimated a 0.98 probability that chimpanzee density in the region had declined by at least 10% and a 0.99 probability that elephant density had increased by 50% from 2007 to 2021. We recommend applying our modified hierarchical distance sampling model in the analysis of indirect count data to account for spatial variation in animal density, assess population change between survey periods, estimate the decay rate of animal signs, and obtain more precise density estimates than achievable with traditional methods. 
    more » « less
  5. Abstract In arctic tundra, large and small mammalian herbivores have substantial impacts on the vegetation community and consequently can affect the magnitude of carbon cycling. However, herbivores are often absent from modern carbon cycle models, partly because relatively few field studies focus on herbivore impacts on carbon cycling. Our objectives were to quantify the impact of 21 years of large herbivore and large and small herbivore exclusion on carbon cycling during peak growing season in a dry heath tundra community. When herbivores were excluded, we observed a significantly greater leaf area index as well as greater vascular plant abundance. While we did not observe significant differences in deciduous dwarf shrub abundance across treatments, evergreen dwarf shrub abundance was greater where large and small herbivores were excluded. Both foliose and fruticose lichen abundance were higher in the large herbivore, but not the small and large herbivore exclosures. Net ecosystem exchange (NEE) likewise indicated the highest carbon uptake in the exclosure treatments and lowest uptake in the control (CT), suggesting that herbivory decreased the capacity of dry heath tundra to take up carbon. Moreover, our calculated NEE for average light and temperature conditions for July 2017, when our measurements were taken, indicated that the tundra was a carbon source in CT, but was a carbon sink in both exclosure treatments, indicating removal of grazing pressure can change the carbon balance of dry heath tundra. Collectively, these findings suggest that herbivore absence can lead to changes in plant community structure of dry heath tundra that in turn can increase its capacity to take up carbon. 
    more » « less