skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 28, 2026

Title: DiaLLMs: EHR-Enhanced Clinical Conversational System for Clinical Test Recommendation and Diagnosis Prediction
Recent advances in Large Language Models (LLMs) have led to remarkable progresses in medical consultation.However, existing medical LLMs overlook the essential role of Electronic Health Records (EHR) and focus primarily on diagnosis recommendation, limiting their clinical applicability. We propose DiaLLM, the first medical LLM that integrates heterogeneous EHR data into clinically grounded dialogues, enabling clinical test recommendation, result interpretation, and diagnosis prediction to better align with real-world medical practice. To construct clinically grounded dialogues from EHR, we design a Clinical Test Reference (CTR) strategy that maps each clinical code to its corresponding description and classifies test results as “normal” or “abnormal”. Additionally, DiaLLM employs a reinforcement learning framework for evidence acquisition and automated diagnosis. To handle the large action space, we introduce a reject sampling strategy to reduce redundancy and improve exploration efficiency. Furthermore, a confirmation reward and a class-sensitive diagnosis reward are designed to guide accurate diagnosis prediction.Extensive experimental results demonstrate that DiaLLM outperforms baselines in clinical test recommendation and diagnosis prediction. Our code is available at Github.  more » « less
Award ID(s):
2226025
PAR ID:
10638656
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Findings of the Association for Computational Linguistics: ACL 2025, Association for Computational Linguistics
Date Published:
Subject(s) / Keyword(s):
Large Language Models Machine Learning Electronic Health Records
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dynamic treatment regimes (DTRs) are critical to precision medicine, optimizing long-term outcomes through personalized, real-time decision making in evolving clinical contexts, but require careful supervision for unsafe treatment risks. Existing efforts rely primarily on clinician prescribed gold standards despite the absence of a known optimal strategy, and predominantly using structured EHR data without extracting valuable insights from clinical notes, limiting their reliability for treatment recommendations. In this work, we introduce SAFER, a calibrated risk-aware tabular-language recommendation framework for DTR that integrates both structured EHR and clinical notes, enabling them to learn from each other, and addresses inherent label uncertainty by assuming ambiguous optimal treatment solution for deceased patients. Moreover, SAFER employs conformal prediction to provide statistical guarantees, ensuring safe treatment recommendations while filtering out uncertain predictions. Experiments on two publicly available sepsis datasets demonstrate that SAFER outperforms state-of-the-art baselines across multiple recommendation metrics and counterfactual mortality rate, while offering robust formal assurances. These findings underscore SAFER’s potential as a trustworthy and theoretically grounded solution for high-stakes DTR applications. 
    more » « less
  2. Electronic Health Record modeling is crucial for digital medicine. However, existing models ignore higher-order interactions among medical codes and their causal relations towards downstream clinical predictions. To address such limitations, we propose a novel framework CACHE, to provide effective and insightful clinical predictions based on hypergraph representation learning and counterfactual and factual reasoning techniques. Experiments on two real EHR datasets show the superior performance of CACHE. Case studies with a domain expert illustrate a preferred capability of CACHE in generating clinically meaningful interpretations towards the correct predictions. 
    more » « less
  3. IntroductionPredictive models have been used to aid early diagnosis of PCOS, though existing models are based on small sample sizes and limited to fertility clinic populations. We built a predictive model using machine learning algorithms based on an outpatient population at risk for PCOS to predict risk and facilitate earlier diagnosis, particularly among those who meet diagnostic criteria but have not received a diagnosis. MethodsThis is a retrospective cohort study from a SafetyNet hospital’s electronic health records (EHR) from 2003-2016. The study population included 30,601 women aged 18-45 years without concurrent endocrinopathy who had any visit to Boston Medical Center for primary care, obstetrics and gynecology, endocrinology, family medicine, or general internal medicine. Four prediction outcomes were assessed for PCOS. The first outcome was PCOS ICD-9 diagnosis with additional model outcomes of algorithm-defined PCOS. The latter was based on Rotterdam criteria and merging laboratory values, radiographic imaging, and ICD data from the EHR to define irregular menstruation, hyperandrogenism, and polycystic ovarian morphology on ultrasound. ResultsWe developed predictive models using four machine learning methods: logistic regression, supported vector machine, gradient boosted trees, and random forests. Hormone values (follicle-stimulating hormone, luteinizing hormone, estradiol, and sex hormone binding globulin) were combined to create a multilayer perceptron score using a neural network classifier. Prediction of PCOS prior to clinical diagnosis in an out-of-sample test set of patients achieved an average AUC of 85%, 81%, 80%, and 82%, respectively in Models I, II, III and IV. Significant positive predictors of PCOS diagnosis across models included hormone levels and obesity; negative predictors included gravidity and positive bHCG. ConclusionMachine learning algorithms were used to predict PCOS based on a large at-risk population. This approach may guide early detection of PCOS within EHR-interfaced populations to facilitate counseling and interventions that may reduce long-term health consequences. Our model illustrates the potential benefits of an artificial intelligence-enabled provider assistance tool that can be integrated into the EHR to reduce delays in diagnosis. However, model validation in other hospital-based populations is necessary. 
    more » « less
  4. Abstract ObjectiveThe use of electronic health records (EHRs) for clinical risk prediction is on the rise. However, in many practical settings, the limited availability of task-specific EHR data can restrict the application of standard machine learning pipelines. In this study, we investigate the potential of leveraging language models (LMs) as a means to incorporate supplementary domain knowledge for improving the performance of various EHR-based risk prediction tasks. MethodsWe propose two novel LM-based methods, namely “LLaMA2-EHR” and “Sent-e-Med.” Our focus is on utilizing the textual descriptions within structured EHRs to make risk predictions about future diagnoses. We conduct a comprehensive comparison with previous approaches across various data types and sizes. ResultsExperiments across 6 different methods and 3 separate risk prediction tasks reveal that employing LMs to represent structured EHRs, such as diagnostic histories, results in significant performance improvements when evaluated using standard metrics such as area under the receiver operating characteristic (ROC) curve and precision-recall (PR) curve. Additionally, they offer benefits such as few-shot learning, the ability to handle previously unseen medical concepts, and adaptability to various medical vocabularies. However, it is noteworthy that outcomes may exhibit sensitivity to a specific prompt. ConclusionLMs encompass extensive embedded knowledge, making them valuable for the analysis of EHRs in the context of risk prediction. Nevertheless, it is important to exercise caution in their application, as ongoing safety concerns related to LMs persist and require continuous consideration. 
    more » « less
  5. Doshi-Velez, Finale; Fackler, Jim; Jung, Ken; Kale, David; Ranganath, Rajesh; Wallace, Byron; Wiens, Jenna (Ed.)
    Electronic Health Records (EHRs) provide vital contextual information to radiologists and other physicians when making a diagnosis. Unfortunately, because a given patient’s record may contain hundreds of notes and reports, identifying relevant information within these in the short time typically allotted to a case is very difficult. We propose and evaluate models that extract relevant text snippets from patient records to provide a rough case summary intended to aid physicians considering one or more diagnoses. This is hard because direct supervision (i.e., physician annotations of snippets relevant to specific diagnoses in medical records) is prohibitively expensive to collect at scale. We propose a distantly supervised strategy in which we use groups of International Classification of Diseases (ICD) codes observed in ‘future’ records as noisy proxies for ‘downstream’ diagnoses. Using this we train a transformer-based neural model to perform extractive summarization conditioned on potential diagnoses. This model defines an attention mechanism that is conditioned on potential diagnoses (queries) provided by the diagnosing physician. We train (via distant supervision) and evaluate variants of this model on EHR data from Brigham and Women’s Hospital in Boston and MIMIC-III (the latter to facilitate reproducibility). Evaluations performed by radiologists demonstrate that these distantly supervised models yield better extractive summaries than do unsupervised approaches. Such models may aid diagnosis by identifying sentences in past patient reports that are clinically relevant to a potential diagnosis. Code is available at https://github.com/dmcinerney/ehr-extraction-models. 
    more » « less