Abstract The 2023 Turkey earthquake sequence involved unexpected ruptures across numerous fault segments. We present 3D dynamic rupture simulations to illuminate the complex dynamics of the earthquake doublet. Our models are constrained by observations available within days of the sequence and deliver timely, mechanically consistent explanations of the unforeseen rupture paths, diverse rupture speeds, multiple slip episodes, heterogeneous fault offsets, locally strong shaking, and fault system interactions. Our simulations link both earthquakes, matching geodetic and seismic observations and reconciling regional seismotectonics, rupture dynamics, and ground motions of a fault system represented by 10 curved dipping segments and embedded in a heterogeneous stress field. The Mw 7.8 earthquake features delayed backward branching from a steeply branching splay fault, not requiring supershear speeds. The asymmetrical dynamics of the distinct, bilateral Mw 7.7 earthquake are explained by heterogeneous fault strength, prestress orientation, fracture energy, and static stress changes from the previous earthquake. Our models explain the northward deviation of its eastern rupture and the minimal slip observed on the Sürgü fault. 3D dynamic rupture scenarios can elucidate unexpected observations shortly after major earthquakes, providing timely insights for data-driven analysis and hazard assessment toward a comprehensive, physically consistent understanding of the mechanics of multifault systems.
more »
« less
This content will become publicly available on May 16, 2026
The big impact of small quakes on tectonic tremor synchronization
Tectonic tremor tracks the repeated slow rupture of certain major plate boundary faults. One of the most perplexing aspects about tremor is that some fault segments produce strongly periodic, spatially extensive tremor episodes, while others have more disorganized, asynchronous activity. Here, we measure the size of segments that activate synchronously during tremor episodes and the relationship to regional earthquake rate on major plate boundaries. Tremor synchronization in space seems to be limited by the activity of small, nearby crustal and intraslab earthquakes. This observation can be explained by a competition between the self-synchronization of fault segments and perturbation by regional earthquakes. Our results imply previously unrecognized interactions across subduction systems, in which earthquake activity far from the fault influences whether it breaks in small or large segments.
more »
« less
- Award ID(s):
- 2031457
- PAR ID:
- 10638698
- Publisher / Repository:
- AAAS
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 11
- Issue:
- 20
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We study the mechanical response of two‐dimensional vertical strike‐slip fault to coseismic damage evolution and interseismic healing of fault damage zones by simulating fully dynamic earthquake cycles. Our models show that fault zone structure evolution during the seismic cycle can have pronounced effects on mechanical behavior of locked and creeping fault segments. Immature fault damage zone models exhibit small and moderate subsurface earthquakes with irregular recurrence intervals and abundance of slow‐slip events during the interseismic period. In contrast, mature fault damage zone models host pulse‐like earthquake ruptures that can propagate to the surface and extend throughout the seismogenic zone, resulting in large stress drop, characteristic rupture extents, and regular recurrence intervals. Our results suggest that interseismic healing and coseismic damage accumulation in fault zones can explain the observed differences of earthquake behaviors between mature and immature fault zones and indicate a link between regional seismic hazard and fault structural maturity.more » « less
-
Abstract Earthquake clustering can be promoted by local, regional, and remote triggering. The interaction between faults by static and dynamic stress transfer has received much attention. However, the role of quasi‐static stress interaction mediated by viscoelastic flow is still poorly understood. Here, we investigate whether the tight synchronization of moment‐magnitude 6 earthquakes every about 6 years on distant asperities in the Gofar‐Discovery fault system of the East Pacific Rise may be caused by mechanical coupling within the lithosphere‐asthenosphere system. We build a three‐dimensional numerical model of seismic cycles in the framework of rate‐ and state‐dependent friction with a brittle layer overlaying a viscoelastic mantle with nonlinear rheology to simulate earthquake cycles on separate asperities. The brittle section of the West Gofar fault consists of two frictionally unstable 20 km‐long by 5 km‐wide asperities separated by a velocity‐strengthening barrier, consistent with seismic observations, allowing stress transfer by afterslip and viscoelastic relaxation. We find that viscoelastic stress transfer can promote the synchronization of earthquakes. Even if the asperities are separated by as far as 30 km, synchronization is still possible for a viscosity of the underlying mantle of 1017 Pa s, which can be attained by dislocation creep or transient creep during the postseismic period. Considering the similarities in tectonic and structural settings, viscoelastic stress transfer and earthquake synchronization may also occur at 15’20 (Mid‐Atlantic Ridge), George V (Southeast Indian Ridge), Menard and Heezen transform fault (Pacific‐Antarctic Ridge).more » « less
-
null (Ed.)Exploring the spatiotemporal distribution of earthquake activity, especially earthquake migration of fault systems, can greatly to understand the basic mechanics of earthquakes and the assessment of earthquake risk. By establishing a three-dimensional strike-slip fault model, to derive the stress response and fault slip along the fault under regional stress conditions. Our study helps to create a long-term, complete earthquake catalog. We modelled Long-Short Term Memory (LSTM) networks for pattern recognition of the synthetical earthquake catalog. The performance of the models was compared using the mean-square error (MSE). Our results showed clearly the application of LSTM showed a meaningful result of 0.08% in the MSE values. Our best model can predict the time and magnitude of the earthquakes with a magnitude greater than Mw = 6.5 with a similar clustering period. These results showed conclusively that applying LSTM in a spatiotemporal series prediction provides a potential application in the study of earthquake mechanics and forecasting of major earthquake events.more » « less
-
null (Ed.)The fault damage zone is a well-known structure of localized deformation around faults. Its material properties evolve over earthquake cycles due to coseismic damage accumulation and interseismic healing. We will present fully dynamic earthquake cycle simulations to show how the styles of earthquake nucleation and rupture propagation change as fault zone material properties vary temporally. First, we will focus on the influence of fault zone structural maturity quantified by near-fault seismic wave velocities in simulations. The simulations show that immature fault zones promote small and moderate subsurface earthquakes with irregular recurrence intervals, whereas mature fault zones host pulse-like earthquake rupture that can propagate to the surface, extend throughout the seismogenic zone, and occur at regular intervals. The interseismic healing in immature fault zones plays a key role in allowing the development of aseismic slip episodes including slow-slip events and creep, which can propagate into the seismogenic zone, and thus limit the sizes of subsequent earthquakes by releasing fault stress. In the second part, we will discuss how the precursory changes of seismic wave velocities of fault damage zones may affect earthquake nucleation process. Both laboratory experiments and seismic observations show that the abrupt earthquake failure can be preceded by accelerated fault deformation and the accompanying velocity reduction of near-fault rocks. We will use earthquake cycle simulations to systematically test the effects of timing and amplitudes of such precursory velocity changes. Our simulations will provide new insights into the interplay between fault zone structure and earthquake nucleation process, which can be used to guide future real-time monitoring of major fault zones.more » « less
An official website of the United States government
