Abstract As single cells, ciliates build, duplicate, and even regenerate complex cortical patterns by largely unknown mechanisms that precisely position organelles along two cell‐wide axes: anterior–posterior and circumferential (left–right). We review our current understanding of intracellular patterning along the anterior–posterior axis in ciliates, with emphasis on how the new pattern emerges during cell division. We focus on the recent progress at the molecular level that has been driven by the discovery of genes whose mutations cause organelle positioning defects in the model ciliateTetrahymena thermophila. These investigations have revealed a network of highly conserved kinases that are confined to either anterior or posterior domains in the cell cortex. These pattern‐regulating kinases create zones of cortical inhibition that by exclusion determine the precise placement of organelles. We discuss observations and models derived from classical microsurgical experiments in large ciliates (includingStentor) and interpret them in light of recent molecular findings inTetrahymena. In particular, we address the involvement of intracellular gradients as vehicles for positioning organelles along the anterior‐posterior axis. 
                        more » 
                        « less   
                    This content will become publicly available on September 3, 2026
                            
                            Morphogen-guided neocortical organoids recapitulate regional areal identity and model neurodevelopmental disorder pathology
                        
                    
    
            Summary The human neocortex exhibits characteristic regional patterning (arealization) critical for higher-order cognitive function. Disrupted arealization is strongly implicated in neurodevelopmental disorders (NDDs), but current neocortical organoid models largely fail to recapitulate this patterning, limiting mechanistic understanding. Here, we establish a straightforward method for generating arealized organoids through short-term early exposure to anterior (FGF8) or posterior (BMP4/CHIR-99021) morphogens. These treatments created distinct anterior and posterior signaling centers, supporting long-lasting polarization, which we validated with single-cell RNA sequencing that revealed area-specific molecular signatures matching prenatal human cortex. To demonstrate the utility of this platform, we modeled Fragile X Syndrome (FXS) in organoids with distinct anterior and posterior regional identities. FXS organoids showed highly disrupted SOX4/SOX11 expression gradients along the anterior-posterior axis, consistent with alterations found in autism spectrum disorder (ASD) and demonstrate how regional patterning defects may contribute to NDD pathology. Together, our study provides a robust platform for generating neocortical organoids with anterior-posterior molecular signatures and highlights the importance of modeling NDDs using experimental platforms with neuroanatomic specificity. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2225624
- PAR ID:
- 10638912
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Background Organoids, which are organs grown in a dish from stem or progenitor cells, model the structure and function of organs and can be used to define molecular events during organ formation, model human disease, assess drug responses, and perform grafting in vivo for regenerative medicine approaches. For therapeutic applications, there is a need for nondestructive methods to identify the differentiation state of unlabeled organoids in response to treatment with growth factors or pharmacologicals. Methods Using complex 3D submandibular salivary gland organoids developed from embryonic progenitor cells, which respond to EGF by proliferating and FGF2 by undergoing branching morphogenesis and proacinar differentiation, we developed Raman confocal microspectroscopy methods to define Raman signatures for each of these organoid states using both fixed and live organoids. Results Three separate quantitative comparisons, Raman spectral features, multivariate analysis, and machine learning, classified distinct organoid differentiation signatures and revealed that the Raman spectral signatures were predictive of organoid phenotype. Conclusions As the organoids were unlabeled, intact, and hydrated at the time of imaging, Raman spectral fingerprints can be used to noninvasively distinguish between different organoid phenotypes for future applications in disease modeling, drug screening, and regenerative medicine.more » « less
- 
            Abstract BackgroundFetal alcohol syndrome (FAS) due to gestational alcohol exposure represents one of the most common causes of nonheritable lifelong disability worldwide. In vitro and in vivo models have successfully recapitulated multiple facets of the disorder, including morphological and behavioral deficits, but far less is understood regarding the molecular and genetic mechanisms underlying FAS. MethodsIn this study, we utilized an in vitro human pluripotent stem cell‐based (hPSC) model of corticogenesis to probe the effects of early, chronic intermittent alcohol exposure on the transcriptome of first trimester‐equivalent cortical neurons. ResultsWe used RNA sequencing of developing hPSC‐derived neurons treated for 50 days with 50 mM ethanol and identified a relatively small number of biological pathways significantly altered by alcohol exposure. These included cell‐type specification, axon guidance, synaptic function, and regional patterning, with a notable upregulation of WNT signaling‐associated transcripts observed in alcohol‐exposed cultures relative to alcohol‐naïve controls. Importantly, this effect paralleled a shift in gene expression of transcripts associated with regional patterning, such that caudal forebrain‐related transcripts were upregulated at the expense of more anterior ones. Results from H9 embryonic stem cells were largely replicated in an induced pluripotent stem cell line (IMR90‐4), indicating that these patterning alterations are not cell line‐specific. ConclusionsWe found that a major effect of chronic intermittent alcohol on the developing cerebral cortex is an overall imbalance in regionalization, with enrichment of gene expression related to the production of posterodorsal progenitors and a diminution of anteroventral progenitors. This finding parallels behavioral and morphological phenotypes observed in animal models of high‐dose prenatal alcohol exposure, as well as patients with FAS.more » « less
- 
            Abstract The biofabrication of three-dimensional (3D) tissues that recapitulate organ-specific architecture and function would benefit from temporal and spatial control of cell-cell interactions. Bioprinting, while potentially capable of achieving such control, is poorly suited to organoids with conserved cytoarchitectures that are susceptible to plastic deformation. Here, we develop a platform, termed Spatially Patterned Organoid Transfer (SPOT), consisting of an iron-oxide nanoparticle laden hydrogel and magnetized 3D printer to enable the controlled lifting, transport, and deposition of organoids. We identify cellulose nanofibers as both an ideal biomaterial for encasing organoids with magnetic nanoparticles and a shear-thinning, self-healing support hydrogel for maintaining the spatial positioning of organoids to facilitate the generation of assembloids. We leverage SPOT to create precisely arranged assembloids composed of human pluripotent stem cell-derived neural organoids and patient-derived glioma organoids. In doing so, we demonstrate the potential for the SPOT platform to construct assembloids which recapitulate key developmental processes and disease etiologies.more » « less
- 
            Abstract Recently, it has been recognized that natural extracellular matrix (ECM) and tissues are viscoelastic, while only elastic properties have been investigated in the past. How the viscoelastic matrix regulates stem cell patterning is critical for cell‐ECM mechano‐transduction. Here, this study fabricated different methacrylated hyaluronic acid (HA) hydrogels using covalent cross–linking, consisting of two gels with similar elasticity (stiffness) but different viscoelasticity, and two gels with similar viscoelasticity but different elasticity (stiffness). Meanwhile, a second set of dual network hydrogels are fabricated containing both covalent and coordinated cross–links. Human spinal cord organoid (hSCO) patterning in HA hydrogels and co‐culture with isogenic human blood vessel organoids (hBVOs) are investigated. The viscoelastic hydrogels promote regional hSCO patterning compared to the elastic hydrogels. More viscoelastic hydrogels can promote dorsal marker expression, while softer hydrogels result in higher interneuron marker expression. The effects of viscoelastic properties of the hydrogels become more dominant than the stiffness effects in the co‐culture of hSCOs and hBVOs. In addition, more viscoelastic hydrogels can lead to more Yes‐associated protein nuclear translocation, revealing the mechanism of cell‐ECM mechano‐transduction. This research provides insights into viscoelastic behaviors of the hydrogels during human organoid patterning with ECM‐mimicking in vitro microenvironments for applications in regenerative medicine.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
