Investigating macrophage plasticity emerges as a promising strategy for promoting tissue regeneration and can be exploited by regulating the transient receptor potential vanilloid 4 (TRPV4) channel. The TRPV4 channel responds to various stimuli including mechanical, chemical, and selective pharmacological compounds. It is well documented that treating cells such as epithelial cells and fibroblasts with a TRPV4 agonist enhances the Ca2+ influx to the cells, which leads to secretion of pro-inflammatory cytokines, while a TRPV4 antagonist reduces both Ca2+ influx and pro-inflammatory cytokine secretion. In this work, we investigated the effect of selective TRPV4 modulator compounds on U937-differentiated macrophages encapsulated within three-dimensional (3D) matrices. Despite offering a more physiologically relevant model than 2D cultures, pharmacological treatment of macrophages within 3D collagen matrices is largely overlooked in the literature. In this study, pro-inflammatory macrophages were treated with an agonist, 500 nM of GSK1016790A (TRPV4(+)), and an antagonist, 10 mM of RN-1734 (TRPV4(−)), to elucidate the modulation of the TRPV4 channel at both cellular and extracellular levels. To evaluate macrophage phenotypic alterations within 3D collagen matrices following TRPV4 modulator treatment, we employed structural techniques (SEM, Masson’s trichrome, and collagen hybridizing peptide (CHP) staining), quantitative morphological measures for phenotypic assessment, and genotypic methods such as quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). Our data reveal that pharmacological modulation of the macrophage TRPV4 channel alters the cytoskeletal structure of macrophages and influences the 3D structure encapsulating them. Moreover, we proved that treating macrophages with a TRPV4 agonist and antagonist enhances the expression of pro- and anti-inflammatory genes, respectively, leading to the upregulation of surface markers CD80 and CD206. In the TRPV4(−) group, the CD206 gene and CD206 surface marker were significantly upregulated by 9- and 2.5-fold, respectively, compared to the control group. These findings demonstrate that TRPV4 modulation can be utilized to shift macrophage phenotype within the 3D matrix toward a desired state. This is an innovative approach to addressing inflammation in musculoskeletal tissues.
more »
« less
Synergetic role of TRPV4 inhibitor and mechanical loading on reducing inflammation
Resolution of inflammation is essential for normal tissue healing and regeneration, with macrophages playing a key role in regulating this process through phenotypic changes from a pro-inflammatory to an anti-inflammatory state. Pharmacological and mechanical (mechanotherapy) techniques can be employed to polarize macrophages toward an anti-inflammatory phenotype, thereby diminishing inflammation. One clinically relevant pharmacological approach is the inhibition of Transient Receptor Potential Vanilloid 4 (TRPV4). This study investigates the effects of various mechanical loading amplitudes (0%, 3%, and 6%) and TRPV4 inhibition (10 µM RN-1734) on the phenotypic commitments of pro-inflammatory (M1) macrophages within three-dimensional (3D) collagen matrices. M1 macrophages exposed to 3% mechanical strain exhibited upregulated pro-inflammatory responses, including increased pro-inflammatory gene expression and enhanced proteolytic activity within the extracellular matrix. TRPV4 inhibition partially mitigated this inflammation. Notably, 6% mechanical strain combined with TRPV4 inhibition suppressed Mitogen-Activated Protein Kinase (MAPK) expression, leading to reduced pro-inflammatory gene expression and increased anti-inflammatory markers such as CD206. Gene expression analysis further demonstrated significant reductions in pro-inflammatory gene expression and a synergistic promotion of anti-inflammatory phenotypes under TRPV4 inhibition at 6% mechanical strain. Surface protein analysis via immunohistochemistry confirmed these phenotypic shifts, highlighting changes in the expression of CD80 (pro-inflammatory) and CD206 (anti-inflammatory) markers, alongside F-actin and nuclear staining. This research suggests that TRPV4 inhibition, combined with specific mechanical loading (6%), can drive macrophages toward an anti-inflammatory state, thereby may promote inflammation resolution and tissue repair.
more »
« less
- Award ID(s):
- 2213958
- PAR ID:
- 10638947
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Immunology
- Volume:
- 15
- ISSN:
- 1664-3224
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Extracellular vesicles (EVs) have emerged as promising acellular tools for modulating immune responses for tissue engineering applications. This study explores the potential of human fibroblast-derived EVs delivered within a three-dimensional (3D) injectable scaffold composed of polycaprolactone (PCL) nanofibers and collagen (PNCOL) to reprogram macrophage behavior and support scaffold integrity under inflammatory conditions. EVs were successfully isolated from human fibroblasts using ultracentrifugation and characterized for purity, size distribution and surface markers (CD63 and CD9). Macrophage-laden PNCOL scaffolds were prepared under three conditions: macrophage-only (MP), fibroblast co-encapsulated (F-MP), and EV-encapsulated (EV-MP) groups. Structural integrity was assessed via scanning electron microscopy and Masson’s trichrome staining, while immunomodulatory effects were evaluated through metabolic assays, gene expression profiling, and immunohistochemistry for macrophage polarization markers (CD80, CD206). When co-encapsulated with pro-inflammatory (M1) macrophages in PNCOL scaffolds, fibroblast-derived EVs preserved scaffold structure and significantly enhanced macrophage metabolic activity compared to the control (MP) and other experimental group (F-MP). The gene expression and immunohistochemistry data demonstrated substantial upregulation of anti-inflammatory markers (TGF-β, CD163, and CCL18) and surface protein CD206, indicating a phenotypic shift toward M2-like macrophages for EV-encapsulated scaffolds relative to the other groups. The findings of this study demonstrate that fibroblast-derived EVs integrated into injectable PCL–collagen scaffolds offer a viable, cell-free approach to modulate inflammation, preserve scaffold structure, and support regenerative healing. This strategy holds significant promise for advancing immuno-instructive platforms in regenerative medicine, particularly in settings where conventional cell therapies face limitations in survival, cost, or safety.more » « less
-
The immunopathology of chlamydial diseases is exacerbated by a broad-spectrum of inflammatory mediators, which we reported are inhibited by IL-10 in macrophages. However, the chlamydial protein moiety that induces the inflammatory mediators and the mechanisms by which IL-10 inhibits them are unknown. We hypothesized that Chlamydia major outer membrane protein (MOMP) mediates its disease pathogenesis, and the suppressor of cytokine signaling (SOCS)1 and SOCS3 proteins are mediators of the IL-10 inhibitory actions. Our hypothesis was tested by exposing mouse J774 macrophages to chlamydial stimulants (live Chlamydia muridarum and MOMP) with and without IL-10. MOMP significantly induced several inflammatory mediators (IL-6, IL-12p40, CCL5, CXCL10), which were dose-dependently inhibited by IL-10. Chlamydial stimulants induced the mRNA gene transcripts and protein expression of SOCS1 and SOCS3, with more SOCS3 expression. Notably, IL-10 reciprocally regulated their expression by reducing SOCS1 and increasing SOCS3. Specific inhibitions of MAPK pathways revealed that p38, JNK, and MEK1/2 are required for inducing inflammatory mediators as well as SOCS1 and SOCS3. Chlamydial stimulants triggered an M1 pro-inflammatory phenotype evidently by an enhanced nos2 (M1 marker) expression, which was skewed by IL-10 towards a more M2 anti-inflammatory phenotype by the increased expression of mrc1 and arg1 (M2 markers) and the reduced SOCS1/SOCS3 ratios. Neutralization of endogenously produced IL-10 augmented the secretion of inflammatory mediators, reduced SOCS3 expression, and skewed the chlamydial M1 to an M2 phenotype. Inhibition of proteasome degradation increased TNF but decreased IL-10, CCL5, and CXCL10 secretion by suppressing SOCS1 and SOCS3 expressions and dysregulating their STAT1 and STAT3 transcription factors. Our data show that SOCS1 and SOCS3 are regulators of IL-10 inhibitory actions, and underscore SOCS proteins as therapeutic targets for IL-10 control of inflammation for Chlamydia and other bacterial inflammatory diseases.more » « less
-
Microglia-mediated inflammation plays a significant role in neuronal and vascular damage in diabetic retinopathy (DR), but the mechanism linking inflammation, neurodegeneration, and impaired vascular integrity is still unclear. Previous studies from diabetic mouse models showed accumulation of fibrinogen at vessel lesions surrounded by perivascular microglial clusters. The purpose of this study was to evaluate whether the pathological hallmarks of gliosis and vascular aberrations characterized in diabetic animal models are consistent with those in diabetic human retinas, and to assess the effects of the defibrinogenating agent ancrod in retinal pathology and visual acuity in a two-hit inflammatory diabetic mouse model. Post-mortem human eyes were assessed for retinal and inflammatory gene expression by quantitative PCR. Immunohistochemical analyses in human and murine retinas were performed using markers of gliosis, vascular integrity, and fibrinogen deposition. An inflammatory microenvironment, with microgliosis and microaneurysms, was found in the diabetic human eye. Microglial activation, fibrinogen deposition, and axonal loss were also observed in the diabetic murine retina. Ancrod treatment correlated with reduced microgliosis, less fibrinogen deposition, and reduced pro-inflammatory cytokine levels in diseased retinal tissues. Together, these data suggest that fibrinogen contributes to microglia-mediated inflammation in the diabetic retina. Since retinal microgliosis, vascular pathology, and vision deficits manifest in diabetic mice irrespective of CX3CR1 genotype, our results indicate that defibrinogenation can dampen systemic neuroinflammation and vascular insults, thereby improving vision at early stages of diabetes. Summary Statement Diabetic human and murine retinas revealed pronounced microglial morphological activation and vascular abnormalities associated with inflammation. Pharmacological fibrinogen depletion using ancrod dampened microglial morphology alterations, resolved fibrinogen accumulation, rescued axonal integrity, and reduced inflammation in the diabetic murine retina.more » « less
-
Harmful algal blooms are increasing globally and pose serious health concerns releasing cyanotoxins. Microcystin-LR (MC-LR), one of the most frequently produced cyanotoxins, has recently been detected in aerosols generated by the normal motions of affected bodies of water. MC-LR aerosol exposure has been linked to a pro-inflammatory influence on the airways of mice; however, little is understood about the underlying mechanism or the potential consequences. This study aimed to investigate the pro-inflammatory effects of aerosolized MC-LR on murine airways. C57BL/6 and BALB/c mice were exposed to MC-LR aerosols, as these strains are predisposed to type 1/type 17 and type 2 immune responses, respectively. Exposure to MC-LR induced granulocytic inflammation in C57BL/6 but not BALB/c mice, as observed by increased expression of cytokines MIP-1α, CXCL1, CCL2, and GM-CSF compared with their respective vehicle controls. Furthermore, the upregulation of interleukins IL-17A and IL-12 is consistent with Th1- and Th17-driven type 1/type 17 inflammation. Histological analysis confirmed inflammation in the C57BL/6 lungs, with elevated neutrophils and macrophages in the bronchoalveolar lavage fluid and increased pro-inflammatory and pro-resolving oxidized lipids. In contrast, BALB/c mice showed no significant airway inflammation. These results highlight the ability of aerosolized MC-LR to trigger harmful airway inflammation, requiring further research, particularly into populations with predispositions to type 1/type 17 inflammation.more » « less
An official website of the United States government

