In our ever-expanding world of advanced satellite and communications systems, there's a growing challenge for passive radiometer sensors used in the Earth observation like 5G. These passive sensors are challenged by risks from radio frequency interference (RFI) caused by anthropogenic signals. To address this, we urgently need effective methods to quantify the impacts of 5G on Earth observing radiometers. Unfortunately, the lack of substantial datasets in the radio frequency (RF) domain, especially for active/passive coexistence, hinders progress. Our study introduces a controlled testbed featuring a calibrated L-band radiometer and a 5G wireless communication system. In a controlled chamber, this unique setup allows us to observe and quantify transmission effects across different frequency bands. By creating a comprehensive dataset, we aim to standardize and benchmark both wireless communication and passive sensing. With the ability to analyze raw measurements, our testbed facilitates RFI detection and mitigation, fostering the coexistence of wireless communication and passive sensing technologies while establishing crucial standards. 
                        more » 
                        « less   
                    This content will become publicly available on May 12, 2026
                            
                            Robust AI-Assisted Successive Interference Cancellation for Coexistence of RF Sensors and 5G Signals in Shared Spectrum
                        
                    
    
            The coexistence of active 5G communication signals and passive sensors in shared spectrum environments presents significant challenges due to radio frequency interference (RFI). This paper introduces a novel two-stage successive interference cancellation (SIC) architecture leveraging artificial intelligence (AI) to mitigate interference and preserve the integrity of passive sensing. The first stage employs a deep multilayer perceptron (D-MLP) trained with the Levenberg-Marquardt (LM) algorithm to reconstruct dominant active signals. The second stage, powered by a Bayesian Regularization (BR)-trained D-MLP, addresses residual non-linear and weak interference. Together, these stages achieve superior interference cancellation, ensuring robust separation of active and passive signals. The proposed architecture is evaluated in scenarios with varying interference complexities, including single and multiple active sources. Results demonstrate that the AI-assisted SIC framework significantly outperforms conventional methods, effectively reconstructing and removing 5G signals even under challenging conditions, such as low signal-to-noise ratios. The system also showcases adaptability, maintaining high performance when trained on one gain level and tested on another. This research advances the field by providing a scalable and robust solution for enabling reliable spectrum coexistence, particularly for Earth observation and environmental monitoring. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2332661
- PAR ID:
- 10639037
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE International Symposium on Dynamic Spectrum Access Networks
- ISSN:
- 2473-070X
- ISBN:
- 979-8-3315-3362-5
- Page Range / eLocation ID:
- 1 to 8
- Subject(s) / Keyword(s):
- Radio frequency Earth Interference cancellation 5G mobile communication Scalability Bayes methods Reliability Environmental monitoring Artificial intelligence Signal to noise ratio
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            As next-generation communication services and satellite systems expand across diverse frequency bands, the escalating utilization poses heightened interference risks to passive sensors crucial for environmental and atmospheric sensing. Consequently, there is a pressing need for efficient methodologies to detect, characterize, and mitigate the harmful impact of unwanted anthropogenic signals known as radio frequency interference (RFI) at microwave radiometers. One effective strategy to reduce such interference is to facilitate the coexistence of active and passive sensing systems. Such approach would greatly benefit from a testbed along with a dataset encompassing a diverse array of scenarios under controlled environment. This study presents a physical environmentally controlled testbed including a passive fully calibrated L-band radiometer with a digital back-end capable of collecting raw in-phase/quadrature (IQ) samples and an active fifth-generation (5G) wireless communication system with the capability of transmitting waveforms with advanced modulations. Various RFI scenarios such as in-band, transition-band, and out-of-band transmission effects are quantified in terms of calibrated brightness temperature. Raw radiometer and 5G communication samples along with preprocessed time-frequency representations and true brightness temperature data are organized and made publicly available. A detailed procedure and publicly accessible dataset are provided to help test the impact of wireless communication on passive sensing, enabling the scientific community to facilitate coexistence research and quantify interference effects on radiometers.more » « less
- 
            As radio spectrum becomes increasingly scarce, coexistence and bidirectional sharing between active and passive systems becomes a crucial target. In the past, spectrum regulations conferred radio astronomy a status on par with active services, thereby protecting their extreme sensitivity against any harmful interference. However, passive systems are likely to lose exclusive allocations as capacity constraints for active systems increase. The resulting increase in ambient radio frequency noise from various terrestrial and non-terrestrial emitters can only be mitigated with informed collaboration between active and passive users. While coexistence using time-division spectrum access has been proposed in the past, a more dynamic approach following the CBRS sharing principle promises greater spectral occupancy and efficiency, enabled by a spectrum access system capable of constantly monitoring the ambient RF environment. Instead of simply minimizing the potential for any ”harmful” interference to passive users, the goal is to use good engineering to enable sharing between active and passive users. To this end, this research created a Software Defined Radio (SDR)-based testbed at the the Hat Creek Radio Observatory to quantitatively characterize the radio-frequency environment, and flag potential sources of radio frequency interference in the vicinity of the Allen Telescope Array. Sensor validation was carried out via data analysis of I/Q data collected in well-characterized RF bands. Results so far from ground and drone-based surveys are consistent with the expected sources of interference, based on both the deployment of static RF transmitters in the Hat Creek/Redding area as well as the interference detected in telescope observations themselves.more » « less
- 
            Emerging communication services and satellite system deployments pose heightened interference challenges for crucial passive radiometer sensors used in environmental and atmospheric sensing. Therefore, there is an urgent necessity to develop effective approaches for detecting, mitigating, and characterizing the influence of anthropogenic sources, commonly referred to as radio frequency interference (RFI) on passive Earth-observing microwave radiometers. Experimenting the co-existence of active communication and passive sensing systems would greatly benefit from a thorough and realistic dataset covering a wide range of scenarios. The insufficient availability of extensive datasets in the radio frequency (RF) domain, particularly in the context of active/passive coexistence, poses a significant obstacle to progress. This limitation is particularly notable in the context of comprehending the effectiveness of conventional model-based RFI detection approaches when applied to advanced 5th-generation (5G) wireless communication signals. This study first shows the development of an experimental passive radiometer and 5G testbed system and aims to assess the efficacy of the widely employed spectral kurtosis RFI detection approach within controlled anechoic chamber experiments. Our experimental setup comprises a fully calibrated SDR-based L-band radiometer subjected to diverse 5 G wireless signals, varying in power levels, frequency resource block group allocation, and modulation techniques. Significantly, our testbed facilitates the concurrent recording of ground truth temperatures while subjecting the radiometer to 5 G signal transmission which helps to understand the overall effect in the radiometer. This distinctive configuration provides insights into the effectiveness of traditional RFI detection models, offering valuable perspectives on the associated challenges in RFI detection.more » « less
- 
            There is insufficient wireless frequency spectrum to support the continued growth of active wireless technologies and devices. This has provoked extensive research on spectrum coexistence. One case that has gained limited attention in this course is using currently banned frequency bands for active wireless communications. One such option is the 27 MHz-wide narrowband portion of the L-band from 1.400 to 1.427 GHz, which is exclusively devoted to space-borne passive radiometry for remote sensing and radio astronomy. Radio regulations currently prohibit active wireless communications and radars from operating in this band to avoid radio frequency interference (RFI) on highly noise-sensitive passive radiometry equipment. The National Aeronautics and Space Administration’s (NASA’s) Soil Moisture Active Passive (SMAP) satellite is one of the latest space-borne remote sensing missions that evaluates global soil moisture by passive scanning of the thermal emissions of the earth in this frequency band. In this paper, we investigate the opportunistic temporal use of this 27 MHz-wide passive radiometry band for active wireless transmissions when there is no Line of Sight (LoS) between SMAP and a terrestrial wireless network. We use MATLAB simulations to determine the fraction of time that SMAP has LoS (and non-LoS) with a terrestrial wireless cell at different Earth latitudes based on SMAP’s orbital characteristics. We also investigate the severity of RFI induced on SMAP in the presence of a terrestrial cluster of 5G cells with LoS.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
