The increasing demands to enhance information security in data transmission, providing countermeasures against jamming in military applications, as well as boosting data capacity in mobile and satellite communication, have led to a critical need for high-speed frequency-hopping systems. Conventional electronics-based frequency-hopping systems suffer from low data rate, low hopping speed, and narrow hopping-frequency bandwidth. Unfortunately, those are important aspects to facilitate frequency-hopping in emerging microwave systems. The recent advancement of microwave photonics—the use of light to process microwave signals—provides promising solutions to tackle the challenges faced by electronic frequency-hopping systems. In this paper, the challenges of achieving real-time frequency-hopping systems are examined. The operation principles and results of various microwave photonics-enabled frequency-hopping systems are comprehensively discussed, which have wide hopping-frequency bandwidth and frequency-hopping speed from nanoseconds to tens of picoseconds. Lastly, a bio-inspired jamming-avoidance system that could potentially be used for adaptive frequency-hopping is also introduced.
more »
« less
Combat Jamming: An Innovative Mini-Slot Frequency Hopping in B5G Networks
This paper explores an innovative approach to enhance the resilience and security of beyond 5G (B5G) networks through the implementation of cross-bandwidth part (C-BWP) frequency hopping at mini-slot granularity. Utilizing dynamic channel estimation, the proposed system assigns resource blocks (RBs) to user equipment (UEs) of varying priorities, mitigating the impact of jamming in hostile radio environments. We introduce strategic C-BWP frequency hopping for high-priority UEs, optimizing the use of unaffected RBs. This method is shown to effectively counter various types of jamming, ensuring robust and secure communication in both current and future cellular networks. Through rigorous simulation, we demonstrate that intra-slot frequency hopping offers superior resilience by adapting quickly to dynamic channel conditions, significantly enhancing the performance and security of the communications system.
more »
« less
- Award ID(s):
- 2326898
- PAR ID:
- 10639042
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Vehicular Technology Conference
- ISSN:
- 2577-2465
- ISBN:
- 979-8-3315-1778-6
- Page Range / eLocation ID:
- 1 to 7
- Format(s):
- Medium: X
- Location:
- Washington, DC, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An important aspect of 5G networks is the development of Radio Access Network (RAN) slicing, a concept wherein the virtualized infrastructure of wireless networks is subdivided into slices (or enterprises), tailored to fulfill specific use-cases. A key focus in this context is the efficient radio resource allocation to meet various enterprises’ service-level agreements (SLAs). In this work, we introduce Helix: a channel-aware and SLAaware RAN slicing framework for massive multiple input multiple output (MIMO) networks where resource allocation extends to incorporate the spatial dimension available through beamforming. Essentially, the same time-frequency resource block (RB) can be shared across multiple users through multiple antennas. Notably, certain enterprises, particularly those operating critical infrastructure, necessitate dedicated RB allocation, denoted as private networks, to ensure security. Conversely, some enterprises would allow resource sharing with others in the public network to maintain network performance while minimizing capital expenditure. Building upon this understanding, Helix comprises scheduling schemes under both scenarios: where different slices share the same set of RBs, and where they require exclusivity of allocated RBs. We validate the efficacy of our proposed schedulers through simulation by utilizing a channel data set collected from a real-world massive MIMO testbed. Our assessments demonstrate that resource sharing across slices using our approach can lead up to 60.9% reduction in RB usage compared to other approaches. Moreover, our proposed schedulers exhibit significantly enhanced operational efficiency, with significantly faster running time compared to exhaustive greedy approaches while meeting the stringent 5G sub-millisecond-level latency requirement.more » « less
-
An important aspect of 5G networks is the development of Radio Access Network (RAN) slicing, a concept wherein the virtualized infrastructure of wireless networks is subdivided into slices (or enterprises), tailored to fulfill specific use-cases. A key focus in this context is the efficient radio resource allocation to meet various enterprises' service-level agreements (SLAs). In this work, we introduce Helix: a channel-aware and SLA-aware RAN slicing framework for massive multiple input multiple output (MIMO) networks where resource allocation extends to incorporate the spatial dimension available through beamforming. Essentially, the same time-frequency resource block (RB) can be shared across multiple users through multiple antennas. Notably, certain enterprises, particularly those operating critical infrastructure, necessitate dedicated RB allocation, denoted as private networks, to ensure security. Conversely, some enterprises would allow resource sharing with others in the public network to maintain network performance while minimizing capital expenditure. Building upon this understanding, Helix comprises scheduling schemes under both scenarios: where different slices share the same set of RBs, and where they require exclusivity of allocated RBs. We validate the efficacy of our proposed schedulers through simulation by utilizing a channel data set collected from a real-world massive MIMO testbed. Our assessments demonstrate that resource sharing across slices using our approach can lead up to 60.9% reduction in RB usage compared to other approaches. Moreover, our proposed schedulers exhibit significantly enhanced operational efficiency, with significantly faster running time compared to exhaustive greedy approaches while meeting the stringent 5G sub-millisecond-level latency requirement.more » « less
-
The advent of 5G technology introduces significant advancements in speed, latency, and device connectivity, but also poses complex security challenges. Among typical denial-of-service (DoS) attacks, jamming attack can severely degrade network performance by interfering critical communication channels. To address this issue, we propose a novel security solution utilizing multipath communication, which distributes message segments across multiple paths to ensure message recovery even when some paths are compromised. This strategy enhances network resilience and aligns with zero-trust architecture principles. Moreover, the proposed scheme has been implemented in our testbed to validate the concept and assess the network performance under jamming attacks. Our findings demonstrate that this method eliminates the negative impacts caused by DoS attacks, maintaining the integrity and availability of critical network services. The results highlight the robustness of multipath communication in securing 5G networks against sophisticated attacks, thereby safeguarding essential communications in dynamic and potentially hostile environments.more » « less
-
Integrated sensing and communication (ISAC) is considered an emerging technology for 6th-generation (6G) wireless and mobile networks. It is expected to enable a wide variety of vertical applications, ranging from unmanned aerial vehicles (UAVs) detection for critical infrastructure protection to physiological sensing for mobile healthcare. Despite its significant socioeconomic benefits, ISAC technology also raises unique challenges in system security and user privacy. Being aware of the security and privacy challenges, understanding the trade-off between security and communication performance, and exploring potential countermeasures in practical systems are critical to a wide adoption of this technology in various application scenarios. This talk will discuss various security and privacy threats in emerging ISAC systems with a focus on communication-centric ISAC systems, that is, using the cellular or WiFi infrastructure for sensing. We will then examine potential mechanisms to secure ISAC systems and protect user privacy at the physical and data layers under different sensing modes. At the wireless physical (PHY) layer, an ISAC system is subject to both passive and active attacks, such as unauthorized passive sensing, unauthorized active sensing, signal spoofing, and jamming. Potential countermeasures include wireless channel/radio frequency (RF) environment obfuscation, waveform randomization, anti-jamming communication, and spectrum/RF monitoring. At the data layer, user privacy could be compromised during data collection, sharing, storage, and usage. For sensing systems powered by artificial intelligence (AI), user privacy could also be compromised during the model training and inference stages. An attacker could falsify the sensing data to achieve a malicious goal. Potential countermeasures include the application of privacy enhancing technologies (PETs), such as data anonymization, differential privacy, homomorphic encryption, trusted execution, and data synthesis.more » « less
An official website of the United States government

