skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi‐Centennial Spatial Coherency Among Atlantic Tropical Cyclones From Simulated and Reconstructed Storm Records
Abstract Proxy‐based reconstructions of long‐term Atlantic tropical cyclone (TC) variability reveal low‐frequency oscillations in regional TC landfalls over the Common Era. However, the limited spatial coverage and increased uncertainty of the proxy records complicates assessments of this feature. Here we present a new multi‐ensemble set of synthetic TCs downscaled from the Last Millennium Reanalysis project, which is based on sea surface temperatures that more accurately reflect past conditions. Throughout ensemble members, there are coherent multi‐centennial shifts in landfalls with persistent intervals of increased (decreased) occurrence along the eastern US concurrent with inverse activity in the southwest Caribbean and Gulf of Mexico, associated with basin‐scale redistributions of storm tracks. The emergent TC‐dipole from modeled climate provides context and support for its presence within proxy‐reconstructions. Furthermore, dipole recurrence across ensembles demonstrates that it arises from sea surface temperature‐informed climate processes. However, timing differences between ensembles indicate that transient atmospheric variability influences dipole position.  more » « less
Award ID(s):
2234815 2202783 2202785 2202784
PAR ID:
10639212
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Geophysical Research Letterz
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
52
Issue:
18
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tropical cyclone (TC) impacts along the western Atlantic and Caribbean margin are not spatially uniform. Proxy based reconstructions of Common Era TC activity highlight this non‐uniform distribution at centennial‐millennial timescales. However, the sparse geographic scope of these reconstructions impedes our assessment of TC landfalls across broader spatial domains. This work presents a compilation of new and existing TC reconstructions from the Yucatan Peninsula for comparison with a contemporaneous compilation from New England, showing that these regions occupy distal nodes of a low‐frequency TC dipole. Increased Yucatan (New England) storminess is closely linked to intervals of Northern Hemisphere warming (cooling) and the expansion (contraction) of the Intertropical Convergence Zone, suggesting that secular shifts in the mean climate state mediate dipole orientation. 
    more » « less
  2. Abstract Paleoclimate reconstructions are increasingly central to climate assessments, placing recent and future variability in a broader historical context. Paleoclimate reconstructions are increasingly central to climate assessments, placing recent and future variability in a broader historical context. Several estimation methods produce plumes of climate trajectories that practitioners often want to compare to other reconstruction ensembles, or to deterministic trajectories produced by other means, such as global climate models. Of particular interest are “offline” data assimilation (DA) methods, which have recently been adapted to paleoclimatology. Offline DA lacks an explicit model connecting time instants, so its ensemble members are not true system trajectories. This obscures quantitative comparisons, particularly when considering the ensemble mean in isolation. We propose several resampling methods to introduce a priori constraints on temporal behavior, as well as a general notion, called plume distance, to carry out quantitative comparisons between collections of climate trajectories (“plumes”). The plume distance provides a norm in the same physical units as the variable of interest (e.g. °C for temperature), and lends itself to assessments of statistical significance. We apply these tools to four paleoclimate comparisons: (1) global mean surface temperature (GMST) in the online and offline versions of the Last Millennium Reanalysis (v2.1); (2) GMST from these two ensembles to simulations of the Paleoclimate Model Intercomparison Project past1000 ensemble; (3) LMRv2.1 to the PAGES 2k (2019) ensemble of GMST and (4) northern hemisphere mean surface temperature from LMR v2.1 to the Büntgen et al. (2021) ensemble. Results generally show more compatibility between these ensembles than is visually apparent. The proposed methodology is implemented in an open-source Python package, and we discuss possible applications of the plume distance framework beyond paleoclimatology. 
    more » « less
  3. Abstract Sea ice plays multiple important roles in regulating the global climate. Rapid sea ice loss in the Arctic has been documented over recent decades, yet our understanding of long‐term sea ice variability and its feedbacks remains limited by a lack of quantitative sea ice reconstructions. The sea ice diatom‐derived biomarker has been combined with sterols produced by open‐water phytoplankton in the index as a sea ice proxy to achieve semi‐quantitative reconstructions. Here, we analyze a compilation of over 600 published core‐top measurements of paired with brassicasterol and/or dinosterol across (sub‐)Arctic oceans to calculate a newln() index that correlates nonlinearly with sea ice concentration. Leveraging sediment trap and sea ice observational studies, we develop a spatially varying Bayesian calibration (BaySIC) for ln() to account for its non‐stationary relationship with sea ice concentration and other environmental drivers (e.g., sea surface salinity). The model is fully invertible, allowing probabilistic forward modeling of the ln() index as well as inverse modeling of past sea ice concentration with bi‐directional uncertainty quantification.BaySICfacilitates direct proxy‐model comparisons and palaeoclimate data assimilation, providing the polar proxy constraints currently missing in climate model simulations and enabling, for the first time, fully quantitative Arctic sea ice reconstructions. 
    more » « less
  4. Abstract Despite its high tropical cyclone (TC) density, the Eastern North Pacific (ENP) basin has received relatively little research attention on landfall variability. This study investigates the climatological seasonal cycle and interannual variability of TC landfalls in the ENP. We find that the basin is characterized by a bimodal distribution of landfalls, with peaks in June and September–October. Using a composite analysis of high and low landfall years, we show that this distribution is primarily driven by landfall probability rather than genesis. The absence of landfalls during July is due to enhanced easterlies from the Caribbean Low‐Level Jet entering the ENP through gaps in the Americas Cordillera. High landfall years feature enhanced easterly wind reversals from a northward‐shifted Intertropical Convergence Zone. These additional steering winds drive hurricanes ashore in the vulnerable region of southwest Mexico. This study provides valuable insights for improving TC landfall forecasts and preparedness in the region. 
    more » « less
  5. Abstract Decadal variability in the North Atlantic Ocean impacts regional and global climate, yet changes in internal decadal variability under anthropogenic radiative forcing remain largely unexplored. Here we use the Community Earth System Model 2 Large Ensemble under historical and the Shared Socioeconomic Pathway 3-7.0 future radiative forcing scenarios and show that the ensemble spread in northern North Atlantic sea surface temperature (SST) more than doubles during the mid-twenty-first century, highlighting an exceptionally wide range of possible climate states. Furthermore, there are strikingly distinct trajectories in these SSTs, arising from differences in the North Atlantic deep convection among ensemble members starting by 2030. We propose that these are stochastically triggered and subsequently amplified by positive feedbacks involving coupled ocean-atmosphere-sea ice interactions. Freshwater forcing associated with global warming seems necessary for activating these feedbacks, accentuating the impact of external forcing on internal variability. Further investigation on seven additional large ensembles affirms the robustness of our findings. By monitoring these mechanisms in real time and extending dynamical model predictions after positive feedbacks activate, we may achieve skillful long-lead North Atlantic decadal predictions that are effective for multiple decades. 
    more » « less