A number of methods have recently been proposed to reconstruct the evolutionary history of a tumor from noisy DNA sequencing data. We investigate when and how well these histories can be reconstructed from multi-sample bulk sequencing data when considering only single nucleotide variants (SNVs). We formalize this as the Enumeration Variant Allele Frequency Factorization Problem and provide a novel proof for an upper bound on the number of possible phylogenies consistent with a given dataset. In addition, we propose and assess two methods for increasing the robustness and performance of an existing graph based phylogenetic inference method. We apply our approaches to noisy simulated data and find that low coverage and high noise make it more difficult to identify phylogenies. We also apply our methods to both chronic lymphocytic leukemia and clear cell renal cell carcinoma datasets.
more »
« less
This content will become publicly available on December 12, 2025
DICE: fast and accurate distance-based reconstruction of single-cell copy number phylogenies
Somatic copy number alterations (sCNAs) are valuable phylogenetic markers for inferring evolutionary relationships among tumor cell subpopulations. Advances in single-cell DNA sequencing technologies are making it possible to obtain such sCNAs datasets at ever-larger scales. However, existing methods for reconstructing phylogenies from sCNAs are often too slow for large datasets. We propose two new distance-based methods,DICE-barandDICE-star, for reconstructing single-cell tumor phylogenies from sCNA data. Using carefully simulated datasets, we find that DICE-bar matches or exceeds the accuracies of all other methods on noise-free datasets and that DICE-star shows exceptional robustness to noise and outperforms all other methods on noisy datasets. Both methods are also orders of magnitude faster than many existing methods. Our experimental analysis also reveals how noise/error in copy number inference, as expected for real datasets, can drastically impact the accuracies of most methods. We apply DICE-star, the most accurate method on error-prone datasets, to several real single-cell breast and ovarian cancer datasets and find that it rapidly produces phylogenies of equivalent or greater reliability compared with existing methods.
more »
« less
- Award ID(s):
- 2212511
- PAR ID:
- 10639262
- Publisher / Repository:
- Life Science Alliance LLC
- Date Published:
- Journal Name:
- Life Science Alliance
- Volume:
- 8
- Issue:
- 3
- ISSN:
- 2575-1077
- Page Range / eLocation ID:
- e202402923
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Motivation In recent years, the well-known Infinite Sites Assumption (ISA) has been a fundamental feature of computational methods devised for reconstructing tumor phylogenies and inferring cancer progressions. However, recent studies leveraging Single-Cell Sequencing (SCS) techniques have shown evidence of the widespread recurrence and, especially, loss of mutations in several tumor samples. While there exist established computational methods that infer phylogenies with mutation losses, there remain some advancements to be made. Results We present SASC (Simulated Annealing Single-Cell inference): a new and robust approach based on simulated annealing for the inference of cancer progression from SCS data sets. In particular, we introduce an extension of the model of evolution where mutations are only accumulated, by allowing also a limited amount of mutation loss in the evolutionary history of the tumor: the Dollo-k model. We demonstrate that SASC achieves high levels of accuracy when tested on both simulated and real data sets and in comparison with some other available methods. Availability The Simulated Annealing Single-Cell inference (SASC) tool is open source and available at https://github.com/sciccolella/sasc. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
-
Abstract MotivationAdvances in whole-genome single-cell DNA sequencing (scDNA-seq) have led to the development of numerous methods for detecting copy number aberrations (CNAs), a key driver of genetic heterogeneity in cancer. While most of these methods are limited to the inference of total copy number, some recent approaches now infer allele-specific CNAs using innovative techniques for estimating allele-frequencies in low coverage scDNA-seq data. However, these existing allele-specific methods are limited in their segmentation strategies, a crucial step in the CNA detection pipeline. ResultsWe present SEACON (Single-cell Estimation of Allele-specific COpy Numbers), an allele-specific copy number profiler for scDNA-seq data. SEACON uses a Gaussian Mixture Model to identify latent copy number states and breakpoints between contiguous segments across cells, filters the segments for high-quality breakpoints using an ensemble technique, and adopts several strategies for tolerating noisy read-depth and allele frequency measurements. Using a wide array of both real and simulated datasets, we show that SEACON derives accurate copy numbers and surpasses existing approaches under numerous experimental conditions, and identify its strengths and weaknesses. Availability and implementationSEACON is implemented in Python and is freely available open-source from https://github.com/NabaviLab/SEACON and https://doi.org/10.5281/zenodo.12727008.more » « less
-
Przytycka, Teresa M. (Ed.)Emerging ultra-low coverage single-cell DNA sequencing (scDNA-seq) technologies have enabled high resolution evolutionary studies of copy number aberrations (CNAs) within tumors. While these sequencing technologies are well suited for identifying CNAs due to the uniformity of sequencing coverage, the sparsity of coverage poses challenges for the study of single-nucleotide variants (SNVs). In order to maximize the utility of increasingly available ultra-low coverage scDNA-seq data and obtain a comprehensive understanding of tumor evolution, it is important to also analyze the evolution of SNVs from the same set of tumor cells. We presentPhertilizer, a method to infer a clonal tree from ultra-low coverage scDNA-seq data of a tumor. Based on a probabilistic model, our method recursively partitions the data by identifying key evolutionary events in the history of the tumor. We demonstrate the performance ofPhertilizeron simulated data as well as on two real datasets, finding thatPhertilizereffectively utilizes the copy-number signal inherent in the data to more accurately uncover clonal structure and genotypes compared to previous methods.more » « less
-
Abstract SummaryCNAsim is a software package for improved simulation of single-cell copy number alteration (CNA) data from tumors. CNAsim can be used to efficiently generate single-cell copy number profiles for thousands of simulated tumor cells under a more realistic error model and a broader range of possible CNA mechanisms compared with existing simulators. The error model implemented in CNAsim accounts for the specific biases of single-cell sequencing that leads to read count fluctuation and poor resolution of CNA detection. For improved realism over existing simulators, CNAsim can (i) generate WGD, whole-chromosomal CNAs, and chromosome-arm CNAs, (ii) simulate subclonal population structure defined by the accumulation of chromosomal CNAs, and (iii) dilute the sampled cell population with both normal diploid cells and pseudo-diploid cells. The software can also generate DNA-seq data for sampled cells. Availability and implementationCNAsim is written in Python and is freely available open-source from https://github.com/samsonweiner/CNAsim.more » « less
An official website of the United States government
