skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 28, 2026

Title: Tailed molecular beacon probes: an approach for the detection of structured DNA and RNA analytes
Molecular beacon (MB) probes have been extensively used for nucleic acid analysis. However, MB probes fail to hybridize with folded DNA or RNA. Here, we demonstrate that MB probes equipped with extra sequences complementary to the analyte, named ‘tail’, can increase the signal-to-background ratio by B40- fold and hybridization rates by B800-fold compared to conventional MB probes. Tailed MB probes can be used as mismatched-tolerant alternatives to traditional hairpin probes for fast assays.  more » « less
Award ID(s):
2226021 1907824
PAR ID:
10639289
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
RSC
Date Published:
Journal Name:
Chemical Communications
Volume:
61
Issue:
10
ISSN:
1359-7345
Page Range / eLocation ID:
2095 to 2098
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hybridization probes have been used to detect specific nucleic acids for the last 50 years. These probes have applications in medicine, including identifying disease-causing genes or multi-drug resistant bacteria. To be considered robust, a probe should have high selectivity at ambient or low temperatures, be able to detect folded analytes, and remain economical for use in clinical settings. This work will uncover a challenge faced by molecular beacon probes (MBP), describe an adaptation to a molecular beacon probe (MBP) that enables the hybridization of the probe to a folded target, a multicomponent DNA sensor (OWL2) that overcomes common challenges faced by hybridization probes, and a thresholding sensor (MB-Th) that allows for the quantification of microRNA. Through the use of unwinding arms, the MBP adaptation and OWL2 sensor are able to hybridize with and detect folded analytes. Additionally, the OWL2 sensor contains two analyte-binding arms to unwind folded analytes and two sequence-specific strands that bind both the analyte and a universal molecular beacon (UMB) probe to form a fluorescent ‘OWL’ structure. The sensor can differentiate single base mismatches in folded analytes in the temperature range of 5–38 °C, even when challenged with excess wild-type analytes. The MB-Th sensor consists of two gates with increasing affinity for the target, with each varying in thermodynamic stability. The gates bind to separate molecular beacons, each with a unique fluorophore, and produce distinct signals that can be measured simultaneously. Both sensor designs are cost-efficient since the same UMB probe can be used to detect any analyte sequence. These sensors have significant clinical benefits for the diagnosis of non-invasive early-stage cancer and cancers associated with miRNA dysregulation. iv 
    more » « less
  2. Microbial production of the neurotoxin, methylmercury (MeHg), is a significant health and environmental concern as it can bioaccumulate and biomagnify in the food web. A chalkophore or a copper-binding compound, termed methanobactin (MB), has been shown to form strong complexes with mercury [as Hg(II)] and also enables some methanotrophs to degrade MeHg. It is unknown, however, if Hg(II) binding with MB can also impede Hg(II) methylation by other microbes. Contrary to expectations, MB produced by the methanotroph Methylosinus trichosporium OB3b (OB3b-MB) enhanced the rate and efficiency of Hg(II) methylation more than that observed with thiol compounds (such as cysteine) by the mercury-methylating bacteria, D. desulfuricans ND132 and G. sulfurreducens PCA. Compared to no-MB controls, OB3b-MB decreased the rates of Hg(II) sorption and internalization, but increased methylation by 5–7 fold, suggesting that Hg(II) complexation with OB3b-MB facilitated exchange and internal transfer of Hg(II) to the HgcAB proteins required for methylation. Conversely, addition of excess amounts of OB3b-MB or a different form of MB from Methylocystis strain SB2 (SB2-MB) inhibited Hg(II) methylation, likely due to greater binding of Hg(II). Collectively our results underscore complex roles of exogenous metal-scavenging compounds produced by microbes in controlling net production and bioaccumulation of MeHg in the environment. 
    more » « less
  3. Abstract Flow cytometry estimates of genome sizes among species of Drosophila show a 3-fold variation, ranging from ∼127 Mb in Drosophila mercatorum to ∼400 Mb in Drosophila cyrtoloma. However, the assembled portion of the Muller F element (orthologous to the fourth chromosome in Drosophila melanogaster) shows a nearly 14-fold variation in size, ranging from ∼1.3 Mb to >18 Mb. Here, we present chromosome-level long-read genome assemblies for 4 Drosophila species with expanded F elements ranging in size from 2.3 to 20.5 Mb. Each Muller element is present as a single scaffold in each assembly. These assemblies will enable new insights into the evolutionary causes and consequences of chromosome size expansion. 
    more » « less
  4. Abstract We unravel the correlated quantum quench dynamics of a single impurity immersed in a bosonic environment confined in an one-dimensional double-well potential. A particular emphasis is placed on the structure of the time-evolved many-body (MB) wave function by relying on a Schmidt decomposition whose coefficients directly quantify the number of configurations that are macroscopically populated. For a non-interacting bosonic bath and weak postquench impurity-bath interactions, we observe the dynamical formation of a two-fold fragmented MB state which is related to intra-band excitation processes of the impurity and manifests as a two-body phase separation (clustering) between the two species for repulsive (attractive) interactions. Increasing the postquench impurity-bath coupling strength leads to the destruction of the two-fold fragmentation since the impurity undergoes additional inter-band excitation dynamics. By contrast, a weakly interacting bath suppresses excitations of the bath particles and consequently the system attains a weakly fragmented MB state. Our results explicate the interplay of intra- and inter-band impurity excitations for the dynamical generation of fragmented MB states in multi-well traps and for designing specific entangled impurity states. 
    more » « less
  5. Abstract We introduce a new class of chemical probes for activity‐based sensing of proteases, termed cleavable, locked initiator probes (CLIPs). CLIPs contain a protease‐cleavable peptide linked between two programmable DNA strands—an “initiator” DNA and a shorter “blocking” DNA. These DNA sequences are designed to hybridize, creating a “locked” hairpin‐like structure. Upon proteolytic cleavage, the initiator strand is released, triggering the activation of CRISPR‐Cas12a enzymes and producing an amplified fluorescence response. CLIPs generate more than 20‐fold turn‐on signals at room temperature (25 °C), significantly outperforming commercial probes by yielding ∼40‐fold lower limits of detection (LOD) at 100‐fold lower concentrations. Their versatility enables the detection of various disease‐relevant proteases—including the SARS‐CoV‐2 main protease, caspase‐3, matrix metalloproteinase‐7, and cathepsin B—simply by altering the peptide sequence. Importantly, CLIPs detect cathepsin B in four different colorectal cancer cell lines, highlighting their clinical potential. Taken together, the sensitivity (LOD: ∼88 pM), selectivity, and rapid assay time (down to 35 min), combined with the ability to operate in complex biological media with minimal sample preparation, position CLIPs as powerful chemical tools for activity‐based sensing of functional enzymes. 
    more » « less