skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Designing biological network motif-based controllers by reverse engineering Hill function-type models from linear models
Perfect adaptation, the ability to regulate and maintain gene expression to its desired value despite disturbances, is important in the development of organisms. Building biological controllers to endow engineered biological systems with such perfect adaptation capability is a key goal in synthetic biology. Model-guided exploration of such synthetic circuits has been effective in designing such systems. However, theoretical analysis to guarantee controller properties with nonlinear models, such as Hill functions, remains challenging, while use of linear models fails to capture the inherent nonlinear dynamics of gene expression systems. Here, we propose a reverse engineering approach to infer the kinetic parameters for nonlinear Hill function-type models from analysis of linear models and apply our method to design controllers, which achieve perfect adaptation. Focusing on three biological network motif-based controllers, we demonstrate via simulation the efficacy of the proposed approach in combining linear system theories with nonlinear modelling, to design multiple gene circuits that could deliver perfect adaptation. Given the ubiquitous use of Hill functions in describing the dynamics of biological regulatory networks, we anticipate the proposed reverse engineering approach to benefit a wide range of systems and synthetic biology applications.  more » « less
Award ID(s):
2223720
PAR ID:
10639305
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
The Royal Society
Date Published:
Journal Name:
Journal of The Royal Society Interface
Volume:
22
Issue:
225
ISSN:
1742-5662
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Integral controller is widely used in industry for its capability of endowing perfect adaptation to disturbances. To harness such capability for precise gene expression regulation, synthetic biologists have endeavoured in building biomolecular (quasi-)integral controllers, such as the antithetic integral controller. Despite demonstrated successes, challenges remain with designing the controller for improved transient dynamics and adaptation. Here, we explore and investigate the design principles of alternative RNA-based biological controllers, by modifying an antithetic integral controller with prevalently found natural feed-forward loops (FFL), to improve its transient dynamics and adaptation performance. With model-based analysis, we demonstrate that while the base antithetic controller shows excellent responsiveness and adaptation to system disturbances, incorporating the type-1 incoherent FFL into the base antithetic controller could attenuate the transient dynamics caused by changes in the stimuli, especially in mitigating the undesired overshoot in the output gene expression. Further analysis on the kinetic parameters reveals similar findings to previous studies that the degradation and transcription rates of the circuit RNA species would dominate in shaping the performance of the controllers. 
    more » « less
  2. Abstract Synthetic biology has focused on engineering genetic modules that operate orthogonally from the host cells. A synthetic biological module, however, can be designed to reprogram the host proteome, which in turn enhances the function of the synthetic module. Here, we apply this holistic synthetic biology concept to the engineering of cell-free systems by exploiting the crosstalk between metabolic networks in cells, leading to a protein environment more favorable for protein synthesis. Specifically, we show that local modules expressing translation machinery can reprogram the bacterial proteome, changing the expression levels of more than 700 proteins. The resultant feedback generates a cell-free system that can synthesize fluorescent reporters, protein nanocages, and the gene-editing nuclease Cas9, with up to 5-fold higher expression level than classical cell-free systems. Our work demonstrates a holistic approach that integrates synthetic and systems biology concepts to achieve outcomes not possible by only local, orthogonal circuits. 
    more » « less
  3. Engineered genetic circuits with tailored functions that mimic how cells process information in changing environments (e.g. cell fate decision, chemotaxis, immune response) have great applications in biomedicine and synthetic biology. Although there is a lot of progress toward the design of gene circuits yielding desired steady states (e.g. logic-based networks), building synthetic circuits for dynamic signal processing (e.g. filters, frequency modulation, and controllers) is still challenging. Here, we provide a model-based approach to build gene networks that can operate as band-pass filters by taking advantage of molecular sequestration. By suitably approximating the dynamics of molecular sequestration, we analyze an Incoherent Feed-Forward Loop (IFFL) and a Negative Feedback (NF) circuit and illustrate how they can achieve band-pass filter behavior. Computational analysis shows that a circuit that incorporates both IFFL and NF motifs improves the filter performance. Our approach facilitates the design of sequestration-based filters, and may support the synthesis of molecular controllers with desired specifications. 
    more » « less
  4. null (Ed.)
    One major challenge in synthetic biology is the deleterious impacts of cellular stress caused by expression of heterologous pathways, sensors, and circuits. Feedback control and dynamic regulation are broadly proposed strategies to mitigate this cellular stress by optimizing gene expression levels temporally and in response to biological cues. While a variety of approaches for feedback implementation exist, they are often complex and cannot be easily manipulated. Here, we report a strategy that uses RNA transcriptional regulators to integrate additional layers of control over the output of natural and engineered feedback responsive circuits. Called riboregulated switchable feedback promoters (rSFPs), these gene expression cassettes can be modularly activated using multiple mechanisms, from manual induction to autonomous quorum sensing, allowing control over the timing, magnitude, and autonomy of expression. We develop rSFPs in Escherichia coli to regulate multiple feedback networks and apply them to control the output of two metabolic pathways. We envision that rSFPs will become a valuable tool for flexible and dynamic control of gene expression in metabolic engineering, biological therapeutic production, and many other applications. 
    more » « less
  5. null (Ed.)
    Abstract Many cell- and tissue-level functions are coordinated by intracellular signaling pathways that trigger the expression of context-specific target genes. Yet the input–output relationships that link pathways to the genes they activate are incompletely understood. Mapping the pathway-decoding logic of natural target genes could also provide a basis for engineering novel signal-decoding circuits. Here we report the construction of synthetic immediate-early genes (SynIEGs), target genes of Erk signaling that implement complex, user-defined regulation and can be monitored by using live-cell biosensors to track their transcription and translation. We demonstrate the power of this approach by confirming Erk duration-sensing by FOS , elucidating how the BTG2 gene is differentially regulated by external stimuli, and designing a synthetic immediate-early gene that selectively responds to the combination of growth factor and DNA damage stimuli. SynIEGs pave the way toward engineering molecular circuits that decode signaling dynamics and combinations across a broad range of cellular contexts. 
    more » « less