skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 9, 2025

Title: GLOBE Observer: A Case Study in Advancing Earth System Knowledge with AI-Powered Citizen Science
Citizen science and artificial intelligence (AI) complement each other by harnessing the strengths of both human and machine capabilities. Citizen science generates terabytes of raw numerical, text, and image data, the analysis of which requires automated techniques to process in an efficient manner. Conversely, AI computer vision technology can require tens of thousands of images during the training process, and citizen science projects are well suited to provide large libraries of data. Herein, we describe how AI tools are being applied across the GLOBE Observer citizen science data ecosystem, where image recognition algorithms are supporting data ingest processes, protecting user privacy and improving data fidelity. GLOBE citizen science data has been used to develop automated data classification routines that enable information discovery of mosquito larvae and land cover labels. These advances position GLOBE citizen scientist data for discovery and use in environmental and health research, as well as by machine learning scientists working in the general field of GeoAI.  more » « less
Award ID(s):
2014547
PAR ID:
10639314
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Ubiquity Press
Date Published:
Journal Name:
Citizen Science: Theory and Practice
Volume:
9
Issue:
1
ISSN:
2057-4991
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Current scientific experiments frequently involve control of specialized instruments (e.g., scanning electron mi- croscopes), image data collection from those instruments, and transfer of the data for processing at simulation centers. This process requires a “human-in-the-loop” to perform those tasks manually, which besides requiring a lot of effort and time, could lead to inconsistencies or errors. Thus, it is essential to have an automated system capable of performing remote instrumentation to intelligently control and collect data from the scientific instruments. In this paper, we propose a Remote Instrumentation Science Environment (RISE) for intelligent im- age analytics that provides the infrastructure to securely capture images, determine process parameters via machine learning, and provide experimental control actions via automation, under the premise of “human-on-the-loop”. The machine learning in RISE aids an iterative discovery process to assist researchers to tune instrument settings to improve the outcomes of experiments. Driven by two scientific use cases of image analytics pipelines, one in material science, and another in biomedical science, we show how RISE automation leverages a cutting-edge integration of cloud computing, on-premise HPC cluster, and a Python programming interface available on a microscope. Using web services, we implement RISE to perform automated image data collection/analysis guided by an intelligent agent to provide real-time feedback control of the microscope using the image analytics outputs. Our evaluation results show the benefits of RISE for researchers to obtain higher image analytics accuracy, save precious time in manually controlling the microscopes, while reducing errors in operating the instruments. 
    more » « less
  2. Abstract Purpose of ReviewArtificial intelligence (AI) is disrupting science and discovery across disciplines, offering new modes of inquiry that are changing how questions are asked and answered and upsetting established norms. In this paper, we review the state of the art of AI in landscape ecology and offer six areas of opportunity for landscape ecologists to capitalize on AI tools moving forward. These areas include geospatial AI (GeoAI), geometric AI, Explainable AI (xAI), generative AI (GenAI), Natural Language Processing (NLP), and robotics. Recent FindingsLandscape ecology has a long history of using AI, notably machine learning methods for image classification tasks, agent-based modeling, and species distribution modeling but also knowledge representation and automated reasoning for landscape generation and spatial planning. Methods have become more diverse and complex in recent years, with a new generation of AI-based tools rapidly emerging. These new tools have potential to improve how landscape ecologists map, measure, and model landscape patterns and processes as well as improve the explainability of model outputs. SummaryThere are many untapped opportunities for landscape ecologists to leverage emerging AI-based tools in research and practice including generating virtual landscapes for simulating processes such as wildfires and leveraging natural language processing to generate new insights from text data. Regardless of the application, researchers using AI tools must also consider the ethical implications of data and algorithmic biases and critically assess how these methods can be used responsibly. 
    more » « less
  3. Abstract Image‐based machine learning tools are an ascendant ‘big data’ research avenue. Citizen science platforms, like iNaturalist, and museum‐led initiatives provide researchers with an abundance of data and knowledge to extract. These include extraction of metadata, species identification, and phenomic data. Ecological and evolutionary biologists are increasingly using complex, multi‐step processes on data. These processes often include machine learning techniques, often built by others, that are difficult to reuse by other members in a collaboration.We present a conceptual workflow model for machine learning applications using image data to extract biological knowledge in the emerging field of imageomics. We derive an implementation of this conceptual workflow for a specific imageomics application that adheres to FAIR principles as a formal workflow definition that allows fully automated and reproducible execution, and consists of reusable workflow components.We outline technologies and best practices for creating an automated, reusable and modular workflow, and we show how they promote the reuse of machine learning models and their adaptation for new research questions. This conceptual workflow can be adapted: it can be semi‐automated, contain different components than those presented here, or have parallel components for comparative studies.We encourage researchers—both computer scientists and biologists—to build upon this conceptual workflow that combines machine learning tools on image data to answer novel scientific questions in their respective fields. 
    more » « less
  4. Abstract We report the discovery of cometary activity from minor planet 2011 UG104, which we classify as a Jupiter Family Comet (JFC). This discovery was aided by our Artificial Intelligence (AI) classification system:TailNet. JFC's, short-period comets with eccentric Jupiter-crossing orbits, originate from the Kuiper Belt and thus give us unique insight into the composition and distribution of volatiles in the outer solar system, past and present. Our AI assistantTailNetfirst classified 2011 UG104as active, which was affirmed by Citizen Scientists on our NASA Partner ProgramActive Asteroids. Through further archival image searches our science team found evidence of activity on 2011 UG104on three separate observations from 2021 February to 2021 April (81.°8 < f < 95.°0).  
    more » « less
  5. Artificial Intelligence (AI) and citizen science (CS) are two approaches to tackling data challenges related to scale and complexity. CS by its very definition relies on the joint effort of typically a distributed group of non-expert people to solve problems in a manner that relies on human intelligence. As AI capabilities increasingly augment or complement human intelligence, if not replicate it, there is a growing effort to understand the role that AI can play in CS and vice versa. With this growing interest as context, this special collection, The Future of AI and Citizen Science, illustrates the many ways that CS practitioners are integrating AI into their efforts, as well as identifies current limitations. In this spirit, our editorial briefly introduces the special collection papers to demonstrate and assess some uses of AI in CS; then, we contextualize these uses in terms of key challenges; and conclude with future directions that use AI with CS in both innovative and ethical ways. 
    more » « less