Abstract Vegetation phenology in spring has substantially advanced under climate warming, consequently shifting the seasonality of ecosystem process and altering biosphere–atmosphere feedbacks. However, whether and to what extent photoperiod (i.e., daylength) affects the phenological advancement is unclear, leading to large uncertainties in projecting future phenological changes. Here we examined the photoperiod effect on spring phenology at a regional scale using in situ observation of six deciduous tree species from the Pan European Phenological Network during 1980–2016. We disentangled the photoperiod effect from the temperature effect (i.e., forcing and chilling) by utilizing the unique topography of the northern Alps of Europe (i.e., varying daylength but uniform temperature distribution across latitudes) and examining phenological changes across latitudes. We found prominent photoperiod‐induced shifts in spring leaf‐out across latitudes (up to 1.7 days per latitudinal degree). Photoperiod regulates spring phenology by delaying early leaf‐out and advancing late leaf‐out caused by temperature variations. Based on these findings, we proposed two phenological models that consider the photoperiod effect through different mechanisms and compared them with a chilling model. We found that photoperiod regulation would slow down the advance in spring leaf‐out under projected climate warming and thus mitigate the increasing frost risk in spring that deciduous forests will face in the future. Our findings identify photoperiod as a critical but understudied factor influencing spring phenology, suggesting that the responses of terrestrial ecosystem processes to climate warming are likely to be overestimated without adequately considering the photoperiod effect. 
                        more » 
                        « less   
                    This content will become publicly available on September 30, 2026
                            
                            Combined volunteer and ecological network observations show broad‐scale temperature‐sensitivity patterns for deciduous plant flowering and leaf‐out times across the eastern USA
                        
                    
    
            Many plants are responding to increases in spring temperatures by advancing their leaf‐out and flowering times in temperate regions around the world. The magnitudes of species' sensitivities to temperature vary widely, and patterns within that variation can illuminate underlying phenological drivers related to species' life histories and local‐scale adaptations.The USA National Phenology Network (USA‐NPN) and the National Ecological Observatory Network (NEON) are two rapidly growing, taxonomically and geographically extensive phenology data resources in the USA that offer opportunities to explore emergent properties of spring phenology. Using observations of leaf‐out and flowering in temperate deciduous plant species from USA‐NPN (2009–2024) and NEON (2014–2022), we estimated species‐level flowering (n = 164) and leaf‐out (n = 136) sensitivities to temperatures of the preceding months, obtained through PRISM. We used the results to assess differences in sensitivities between the two datasets and among life history traits (e.g. introduced or native status, seasonal timing and growth habit) and to explore latitudinal patterns in sensitivity among and within species. We found significant relationships between temperature and leaf‐out phenology (2009–2024 for 109 (80%) species, ranging from −7.4 to −1.3 days/°C, and between temperature and flowering phenology for 140 (85%) species, ranging from −8.0 to −1.1 days/°C. Plant sensitivities were highly consistent among the USA‐NPN and NEON datasets, suggesting these datasets can be reasonably combined to expand the coverage of publicly available phenological data across the USA. Introduced species showed stronger sensitivity to temperature than native species for both leaf‐out (−0.8 days/°C difference) and flowering (−0.7 days/°C difference). The strongest (i.e. most negative) leaf‐out sensitivities to temperature were associated with earlier leaf‐out dates and strong flowering sensitivities. Latitudinal analyses within and across species indicate that flowering and leaf‐out sensitivities are both stronger at lower latitudes. Synthesis. Phenological ‘big data’ encompassing over 100 species across the eastern USA shows that leaf‐out and flowering occur earlier with warmer temperatures and that native species and individuals at high latitudes tend to have weaker temperature sensitivities than introduced species and more southern plants; these findings suggest adaptations within and across species to avoid leafing out and flowering under harsh environmental conditions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2017831
- PAR ID:
- 10639353
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Ecology
- ISSN:
- 0022-0477
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Summary Plant phenology, the timing of recurrent biological events, shows key and complex response to climate warming, with consequences for ecosystem functions and services. A key challenge for predicting plant phenology under future climates is to determine whether the phenological changes will persist with more intensive and long‐term warming.Here, we conducted a meta‐analysis of 103 experimental warming studies around the globe to investigate the responses of four phenophases – leaf‐out, first flowering, last flowering, and leaf coloring.We showed that warming advanced leaf‐out and flowering but delayed leaf coloring across herbaceous and woody plants. As the magnitude of warming increased, the response of most plant phenophases gradually leveled off for herbaceous plants, while phenology responded in proportion to warming in woody plants. We also found that the experimental effects of warming on plant phenology diminished over time across all phenophases. Specifically, the rate of changes in first flowering for herbaceous species, as well as leaf‐out and leaf coloring for woody species, decreased as the experimental duration extended.Together, these results suggest that the real‐world impact of global warming on plant phenology will diminish over time as temperatures continue to increase.more » « less
- 
            Abstract Advancing spring phenology is a well documented consequence of anthropogenic climate change, but it is not well understood how climate change will affect the variability of phenology year to year. Species' phenological timings reflect the adaptation to a broad suite of abiotic needs (e.g., thermal energy) and biotic interactions (e.g., predation and pollination), and changes in patterns of variability may disrupt those adaptations and interactions. Here, we present a geographically and taxonomically broad analysis of phenological shifts, temperature sensitivity, and changes in interannual variability encompassing nearly 10,000 long‐term phenology time series representing more than 1000 species across much of the Northern Hemisphere. We show that the timings of leaf‐out, flowering, insect first‐occurrence, and bird arrival were the most sensitive to temperature variation and have advanced at the fastest pace for early‐season species in colder and less seasonal regions. We did not find evidence for changing variability in warmer years in any phenophase groups, although leaf‐out and flower phenology have become moderately but significantly less variable over time. Our findings suggest that climate change has not to this point fundamentally altered the patterns of interannual phenological variability.more » « less
- 
            Phenology is a key biological trait of an organism’s success and is one of the best indicators of its response to recent climate change. Plants are among the most well-studied organisms in this regard, but observational data bearing on this topic are largely restricted to woody species of the northern hemisphere, mostly from ca. the last three decades. Recent research has demonstrated that mobilized online herbarium specimens provide important, albeit mostly neglected, information on plant phenology. Here, we use the web tool CrowdCurio to crowdsource phenological data from more than 10,000 herbarium specimens representing 30 flowering plant species broadly distributed across the eastern United States. Our results, spanning 120 years and generated from over 2,000 crowdsourcers, clarify numerous aspects of plant phenology. First, they reveal that plant reproductive phenology is significantly advancing in response to warming, which is consistent with previous studies. Second, among those species with broad latitudinal ranges, populations from more southern latitudes are significantly more phenologically sensitive to temperature than those from northern populations. Last, contrary to some recent findings, plants in warmer, less variable climates may be much more dynamic, on average, in their phenological sensitivity. Our results are robust to a variety of confounding factors and span large phylogenetic distances and myriad life histories. These may represent more global trends in the latitudinal gradient of phenological response with myriad potential ecological and evolutionary consequences, and leads us to hypothesize that phenological sensitivity across species' ranges is driven by adaptation to local climates.more » « less
- 
            Do longer growing seasons give introduced plants an advantage over native plants in Interior Alaska?null (Ed.)In interior Alaska, increases in growing season length and rapid expansion of introduced species are altering the environment for native plants. We evaluated whether earlier springs, warmer summers, and extended autumns alter the phenology of leaves and flowers in native and introduced forbs and shrubs in the boreal understory and open-canopy habitats, and whether the responses provide an advantage to either group. We tracked the phenology of 29 native and 12 introduced species over three years with very different spring, summer, and autumn conditions. The native species produced flowers (but not leaves) earlier than the introduced species, and both groups advanced leaf-out and flowering in the early-snowmelt year. However, shifts in phenology between early and late years were similar for both groups. There was no increase in fruit development rate for either group in the warm summer. In contrast, in the year with the extended autumn, the introduced plants extended leaf production and time of senescence much more than native species. While growth form and leaf habit could explain the differences in phenology between native and introduced groups in spring and summer, these traits could not account for differences in autumn. We conclude that in boreal Alaska extended autumns may benefit introduced species more than native ones.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
