skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 21, 2026

Title: Shaping of a Reactive Manganese Catalyst Enables Access to Polyfunctionalized Cyclohexanes via Enantioselective C( sp3)─H Bond Oxidation of 1,3‐ meso Diethers
Chiral polyoxygenated cyclohexanes are valuable constituents of biologically relevant products. Herein, we report a protocol for the direct access to these scaffolds via site‐ and enantioselective non‐directed oxidation of cyclohexyl‐3,5‐mesodiethers using aqueous H₂O₂. Structural shaping of a highly reactive chiral Mn‐oxo species, achieved through the combination of a sterically encumbered ligand and a bulky carboxylic acid, promotes a precise fit of the substrate within the catalyst pocket, which translates into exceptional enantioselectivity (up to >99% ee). Computational studies reveal that C─H oxidation proceeds via an initial hydrogen atom transfer, followed by electron transfer, leading to the formation of a chiral cationic intermediate. The resulting desymmetrized 3‐methoxycyclohexanone products serve as valuable intermediates for the synthesis of bioactive cores, as they can undergo orthogonal chemical modifications to enable further structural diversification.  more » « less
Award ID(s):
2154502
PAR ID:
10639362
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
64
Issue:
30
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Axially chiral enamides bearing a N–C axis have been recently studied and were proposed to be valuable chiral building blocks, but a stereoselective synthesis has not been achieved. Here, we report the first enantioselective synthesis of axially chiral enamides via a highly efficient, catalytic approach. In this approach, C(sp 2 )–N bond formation is achieved through an iridium-catalyzed asymmetric allylation, and then in situ isomerization of the initial products through an organic base promoted 1,3-H transfer, leading to the enamide products with excellent central-to-axial transfer of chirality. Computational and experimental studies revealed that the 1,3-H transfer occurs via a stepwise deprotonation/re-protonation pathway with a chiral ion-pair intermediate. Hydrogen bonding interactions with the enamide carbonyl play a significant role in promoting both the reactivity and stereospecificity of the stepwise 1,3-H transfer. The mild and operationally simple formal N -vinylation reaction delivered a series of configurationally stable axially chiral enamides with good to excellent yields and enantioselectivities. 
    more » « less
  2. Abstract Cyclopentene rings possessing a chiral quaternary center are important structural motifs found in various natural products. In this work, we disclose expedient and efficient access to this class of synthetically valuable structuresviahighly enantioselective desymmetrization of prochiral propargylic alcohols. The efficient chirality induction in this asymmetric gold catalysis is achievedviatwo‐point bindings between a gold catalyst featuring a bifunctional phosphine ligand and the substrate homopropargylic alcohol moiety—an H‐bonding interaction between the substrate HO group and a ligand phosphine oxide moiety and the gold‐alkyne complexation. The propargylic alcohol substrates can be prepared readilyviapropargylation of enoate and ketone precursors. In addition to monocyclic cyclopentenes, spirocyclic and bicyclic ones are formed with additional neighboring chiral centers of flexible stereochemistry in addition to the quaternary center. This work represents rare gold‐catalyzed highly enantioselective cycloisomerization of 1,5‐enynes. Density functional theory (DFT) calculations support the chirality induction model and suggest that the rate acceleration enabled by the bifunctional ligand can be attributed to a facilitated protodeauration step at the end of the catalysis. 
    more » « less
  3. Abstract We report herein the development of stereodivergent syntheses of enantioenriched homoallylic alcohols using chiral nonracemic α‐CH2Bpin‐substituted crotylboronate. Chiral phosphoric acid (S)‐A‐catalyzed asymmetric allyl addition with the reagent gaveZ‐anti‐homoallylic alcohols with excellent enantioselectivities andZ‐selectivities. When the enantiomeric acid catalyst (R)‐Awas utilized, the stereoselectivity was completely reversed andE‐anti‐homoallylic alcohols were obtained with highE‐selectivities and excellent enantioselectivities. By pairing the chirality of the boron reagent with the catalyst, two complementary stereoisomers of chiral homoallylic alcohols can be obtained selectively from the same boron reagent. DFT computational studies were conducted to probe the origins of the observed stereoselectivity. These reactions generate highly enantioenriched homoallylic alcohol products that are valuable for rapid construction of polyketide structural frameworks. 
    more » « less
  4. Abstract Catalytic enantioconvergent nucleophilic substitution reactions of alkyl halides are highly valuable transformations, but they are notoriously difficult to implement. Specifically, nucleophilic fluorination is a renowned challenge, especially when inexpensive alkali metal fluorides are used as fluorinating reagents due to their low solubility, high hygroscopicity and Brønsted basicity. Here we report a solution by developing the concept of synergistic hydrogen bonding phase-transfer catalysis. Key to our strategy is the combination of a chiralbis-urea hydrogen bond donor (HBD) and an onium salt—two phase-transfer catalysts essential for the solubilization of potassium fluoride—as a well-characterized ternary HBD–onium fluoride complex. Mechanistic investigations indicate that this chiral ternary complex is capable of enantiodiscrimination of racemic benzylic bromides and α-bromoketones, and upon fluoride delivery affords fluorinated products in high yields and enantioselectivities. This work provides a foundation for enantioconvergent fluorination chemistry enabled through the combination of a HBD catalyst with a co-catalyst specifically curated to meet the requirement of the electrophile. 
    more » « less
  5. Abstract Results pertaining to the mechanism of the oxidation of the tertiary amine 1‐methyl‐4‐(1‐methyl‐1‐H‐pyrrol‐2‐yl)‐1,2,3,6‐tetrahydropyridine (MMTP, a close analog of the Parkinsonism inducing compound MPTP) by 3‐methyllumiflavin (3MLF), a chemical model for the FAD cofactor of monoamine oxidase, are reported. MMTP and related compounds are among the few tertiary amines that are monoamine oxidase B (MAO−B) substrates. The MMTP/3MLF reaction is catalytic in the presence of O2and the results under anaerobic conditions strongly suggest the involvement of radical intermediates, consistent with a single electron transfer mechanism. These observations support a new hypothesis to explain the MAO‐catalyzed oxidations of amines. In general, electron transfer is thermodynamically unfavorable, and as a result, most 1° and 2° amines react via one of the currently accepted polar pathways. Steric constraints prevent 3° amines from reacting via a polar pathway. Those select 3° amines that are MAO substrates possess certain structural features (e. g., a C−H bond that is α‐ both to nitrogen and a C=C) that dramatically lower the pKaof the corresponding radical cation. Consequently, the thermodynamically unfavorable electron transfer equilibrium is driven towards products by an extremely favorable deprotonation step in the context of Le Chatelier's principle. 
    more » « less