skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 9, 2026

Title: Resolution of MALDI-TOF compared to whole genome sequencing for identification of Bacillus species isolated from cleanrooms at NASA Johnson Space Center
IntroductionBacteria are frequently isolated from surfaces in cleanrooms, where astromaterials are curated, at NASA’s Lyndon B. Johnson Space Center (JSC).Bacillusspecies are of particular interest because endospores can endure extreme conditions. Current monitoring programs at JSC rely on culturing microbes from swabs of surfaces followed by identification by 16S rRNA sequencing and the VITEK 2 Compact bacterial identification system. These methods have limited power to resolveBacillusspecies. Whole genome sequencing (WGS) is the current standard for bacterial identification but is expensive and time-consuming. Matrix-assisted laser desorption - time of flight mass spectrometry (MALDI-TOF MS), provides a rapid, low-cost, method of identifying bacterial isolates and has a higher resolution than 16S rRNA sequencing, particularly forBacillusspecies; however, few studies have compared this method to WGS for identification ofBacillusspecies isolated from cleanrooms. MethodsTo address this, we selected 15 isolates for analysis with WGS and MALDI-TOF MS. Hybrid next-generation (Illumina) and 3rd-generation (nanopore) sequencing were used to draft genomes. Mass spectra, generated with MALDI-TOF MS, were processed with custom scripts to identify clusters of closely related isolates. ResultsMALDI-TOF MS and WGS identified 13/15 and 9/14 at the species level, respectively, and clusters of species generated from MALDI-TOF MS showed good agreement, in terms of congruence of partitioning, with phylotypes generated with WGS. Pairs of strains that were > 94% similar to each other, in terms of average amino acid identity (AAI) predicted by WGS, consistently showed cosine similarities of mass spectra >0.8. The only discordance was for a pair of isolates that were classified asPaenibacillusspecies. This pair showed relatively high similarity (0.85) in terms of MALDI-TOF MS but only 85% similarity in terms of AAI. In addition, some strains isolated from cleanrooms at the JSC appeared closely related to strains isolated from spacecraft assembly cleanrooms. DiscussionSince MALDI-TOF MS costs less than whole genome sequencing and offers a throughput of hundreds of isolates per hour, this approach appears to offer a cost-efficient option for identifyingBacillusspecies, and related microbes, isolated during routine monitoring of cleanrooms and similar built environments.  more » « less
Award ID(s):
2320765
PAR ID:
10639440
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Frontiers Media
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
16
ISSN:
1664-302X
Page Range / eLocation ID:
1499516
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Claesen, Jan (Ed.)
    ABSTRACT The human skin microbiome is a diverse ecosystem that can help prevent infections by producing biomolecules and peptides that inhibit growth and virulence of bacterial pathogens.Staphylococcus aureusis a major human pathogen responsible for diseases that range from acute skin and soft tissue infections to life-threatening septicemia. Its ability to form biofilms is a key virulence factor contributing to its success as a pathogen as well as to its increased antimicrobial resistance. Here, we investigated the ability of bacterial skin commensals to produce molecules that inhibitS. aureusbiofilm formation. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identified 77 human skin microbiome bacterial isolates fromStaphylococcusandBacillusgenera. Metabolites from cell-free concentrated media (CFCM) from 26 representative isolates were evaluated for their ability to inhibit biofilm formation by both methicillin-resistant (MRSA) and methicillin-sensitive (MSSA)S. aureusstrains. CFCM, derived from most of the isolates, inhibited biofilm formation to varying extents but did not inhibit planktonic growth ofS. aureus. Size fractionation of the CFCM of threeS.epidermidisisolates indicated that they produce different bioactive molecules. Cluster analysis, based on either MALDI-TOF mass spectra or whole-genome sequencing draft genomes, did not show clear clusters associated with levels of biofilm inhibition amongS. epidermidisstrains. Finally, similar biosynthetic gene clusters were detected in allS. epidermidisstrains analyzed. These findings indicate that several bacterial constituents of the human skin microbiome display antibiofilmin vitroactivity, warranting further investigation on their potential as novel therapeutic agents. IMPORTANCEThe skin is constantly exposed to the environment and consequently to numerous pathogens. The bacterial community that colonizes healthy skin is thought to play an important role in protecting us against infections.S. aureusis a leading cause of death worldwide and is frequently involved in several types of infections, including skin and soft tissue infections. Its ability to adhere to surfaces and produce biofilms is considered an important virulence factor. Here, we analyzed the activity of different species of bacteria isolated from healthy skin onS. aureusbiofilm formation. We found that some species ofStaphylococcusandBacilluscan reduceS. aureusbiofilm formation, although a generally lower level of inhibitory activity was observed compared toS. epidermidisisolates. AmongS. epidermidisisolates, strength of activity was dependent on the strain. Our data highlight the importance of mining the skin microbiome for isolates that could help combat skin pathogens. 
    more » « less
  2. Abstract BackgroundThe Spacecraft Assembly Facility (SAF) at the NASA’s Jet Propulsion Laboratory is the primary cleanroom facility used in the construction of some of the planetary protection (PP)-sensitive missions developed by NASA, including the Mars 2020 Perseverance Rover that launched in July 2020. SAF floor samples (n=98) were collected, over a 6-month period in 2016 prior to the construction of the Mars rover subsystems, to better understand the temporal and spatial distribution of bacterial populations (total, viable, cultivable, and spore) in this unique cleanroom. ResultsCleanroom samples were examined for total (living and dead) and viable (living only) microbial populations using molecular approaches and cultured isolates employing the traditional NASA standard spore assay (NSA), which predominantly isolated spores. The 130 NSA isolates were represented by 16 bacterial genera, of which 97% were identified as spore-formers via Sanger sequencing. The most spatially abundant isolate wasBacillus subtilis, and the most temporally abundant spore-former wasVirgibacillus panthothenticus. The 16S rRNA gene-targeted amplicon sequencing detected 51 additional genera not found in the NSA method. The amplicon sequencing of the samples treated with propidium monoazide (PMA), which would differentiate between viable and dead organisms, revealed a total of 54 genera: 46 viable non-spore forming genera and 8 viable spore forming genera in these samples. The microbial diversity generated by the amplicon sequencing corresponded to ~86% non-spore-formers and ~14% spore-formers. The most common spatially distributed genera wereSphinigobium,Geobacillus, andBacilluswhereas temporally distributed common genera wereAcinetobacter,Geobacilllus, andBacillus. Single-cell genomics detected 6 genera in the sample analyzed, with the most prominent beingAcinetobacter. ConclusionThis study clearly established that detecting spores via NSA does not provide a complete assessment for the cleanliness of spacecraft-associated environments since it failed to detect several PP-relevant genera that were only recovered via molecular methods. This highlights the importance of a methodological paradigm shift to appropriately monitor bioburden in cleanrooms for not only the aeronautical industry but also for pharmaceutical, medical industries, etc., and the need to employ molecular sequencing to complement traditional culture-based assays. 
    more » « less
  3. IntroductionThe rise in extended-spectrum beta-lactamase (ESBL)-producingEnterobacteriaceaein dairy cattle farms poses a risk to human health as they can spread to humans through the food chain, including raw milk. This study was designed to determine the status, antimicrobial resistance, and pathogenic potential of ESBL-producing -E. coliand -Klebsiellaspp. isolates from bulk tank milk (BTM). MethodsThirty-three BTM samples were collected from 17 dairy farms and screened for ESBL-E. coliand -Klebsiellaspp. on CHROMagar ESBL plates. All isolates were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and subjected to antimicrobial susceptibility testing and whole genome sequencing (WGS). ResultsTen presumptive ESBL-producing bacteria, eightE. coli, and twoK. pneumoniaewere isolated. The prevalence of ESBL-E. coliand -K. pneumoniaein BTM was 21.2% and 6.1%, respectively. ESBL-E. coliwere detected in 41.2% of the study farms. Seven of the ESBL-E. coliisolates were multidrug resistant (MDR). The two ESBL-producingK. pneumoniaeisolates were resistant to ceftriaxone. Seven ESBL-E. colistrains carry theblaCTX-Mgene, and five of them co-harboredblaTEM-1. ESBL-E. colico-harboredblaCTX-Mwith other resistance genes, includingqnrB19,tet(A),aadA1,aph(3’’)-Ib,aph(6)-Id),floR,sul2, and chromosomal mutations (gyrA, gyrB, parC, parE, and pmrB). MostE. coliresistance genes were associated with mobile genetic elements, mainly plasmids. Six sequence types (STs) ofE. coliwere detected. All ESBL-E. coliwere predicted to be pathogenic to humans. Four STs (three ST10 and ST69) were high-risk clones ofE. coli. Up to 40 virulence markers were detected in allE. coliisolates. One of theK. pneumoniaewas ST867; the other was novel strain.K. pneumoniaeisolates carried three types of beta-lactamase genes (blaCTX-M,blaTEM-1andblaSHV). The novelK. pneumoniaeST also carried a novel IncFII(K) plasmid ST. ConclusionDetection of high-risk clones of MDR ESBL-E. coliand ESBL-K. pneumoniaein BTM indicates that raw milk could be a reservoir of potentially zoonotic ESBL-E. coliand -K. pneumoniae. 
    more » « less
  4. Abstract BackgroundRNA sequencing is a powerful approach to quantify the genome-wide distribution of mRNA molecules in a population to gain deeper understanding of cellular functions and phenotypes. However, unlike eukaryotic cells, mRNA sequencing of bacterial samples is more challenging due to the absence of a poly-A tail that typically enables efficient capture and enrichment of mRNA from the abundant rRNA molecules in a cell. Moreover, bacterial cells frequently contain 100-fold lower quantities of RNA compared to mammalian cells, which further complicates mRNA sequencing from non-cultivable and non-model bacterial species. To overcome these limitations, we report EMBR-seq (Enrichment of mRNA by Blocked rRNA), a method that efficiently depletes 5S, 16S and 23S rRNA using blocking primers to prevent their amplification. ResultsEMBR-seq results in 90% of the sequenced RNA molecules from anE. coliculture deriving from mRNA. We demonstrate that this increased efficiency provides a deeper view of the transcriptome without introducing technical amplification-induced biases. Moreover, compared to recent methods that employ a large array of oligonucleotides to deplete rRNA, EMBR-seq uses a single or a few oligonucleotides per rRNA, thereby making this new technology significantly more cost-effective, especially when applied to varied bacterial species. Finally, compared to existing commercial kits for bacterial rRNA depletion, we show that EMBR-seq can be used to successfully quantify the transcriptome from more than 500-fold lower starting total RNA. ConclusionsEMBR-seq provides an efficient and cost-effective approach to quantify global gene expression profiles from low input bacterial samples. 
    more » « less
  5. Abstract Objective:Whole genome sequencing (WGS) can help identify transmission of pathogens causing healthcare-associated infections (HAIs). However, the current gold standard of short-read, Illumina-based WGS is labor and time intensive. Given recent improvements in long-read Oxford Nanopore Technologies (ONT) sequencing, we sought to establish a low resource approach providing accurate WGS-pathogen comparison within a time frame allowing for infection prevention and control (IPC) interventions. Methods:WGS was prospectively performed on pathogens at increased risk of potential healthcare transmission using the ONT MinION sequencer with R10.4.1 flow cells and Dorado basecaller. Potential transmission was assessed via Ridom SeqSphere+ for core genome multilocus sequence typing and MINTyper for reference-based core genome single nucleotide polymorphisms using previously published cutoff values. The accuracy of our ONT pipeline was determined relative to Illumina. Results:Over a six-month period, 242 bacterial isolates from 216 patients were sequenced by a single operator. Compared to the Illumina gold standard, our ONT pipeline achieved a mean identity score of Q60 for assembled genomes, even with a coverage rate as low as 40×. The mean time from initiating DNA extraction to complete analysis was 2 days (IQR 2–3.25 days). We identified five potential transmission clusters comprising 21 isolates (8.7% of sequenced strains). Integrating ONT with epidemiological data, >70% (15/21) of putative transmission cluster isolates originated from patients with potential healthcare transmission links. Conclusions:Via a stand-alone ONT pipeline, we detected potentially transmitted HAI pathogens rapidly and accurately, aligning closely with epidemiological data. Our low-resource method has the potential to assist in IPC efforts. 
    more » « less