skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 13, 2026

Title: Introducing comparative immunology through the lens of scaling biology
In most undergraduate programs, immunology is relegated to a few weeks of microbiology or human anatomy courses, or rarely offered as a dedicated topics course. As such, we feel it is essential to consider new approaches to introduce undergraduate students to immunological concepts. Recent work by the ImmunoReach network uncovered gaps in connecting concepts of metabolism and evolution in undergraduate immunology education. With these ideas in mind, we developed a comparative immunology lesson within an upper-division Animal Physiology course, in which students explore how differences in body size change both the metabolic rates and immune cell concentrations. Students who completed this activity improved their scores on scaling questions included in a class exam by more than 29% over students who only received a lecture on the course material. Pre- and post-quizzes demonstrate that the activity increased scores on questions about scaling (>17%) and immune concepts (>100%). By requiring students to apply concepts of scaling, a fundamental concept in biology and physiology, to a system not typically considered in animal physiology courses, this activity enhanced students' understanding of that topic, as well as introducing them to immune cell types. It also introduced pointillist comparative methods, just now being integrated into immune studies, thereby introducing students to leading-edge research in immunology and a new way of thinking about the immune system. We believe this approach can not only fill gaps within undergraduate immunology courses but also incorporate immunology into curricula where immunology is not a viable stand-alone course.  more » « less
Award ID(s):
2316260
PAR ID:
10639582
Author(s) / Creator(s):
;
Editor(s):
Justement, Louis
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Education
Volume:
10
ISSN:
2504-284X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vanniasinkam, Thiru (Ed.)
    The function of the immune system is to protect and keep us safe. The immune system surveillance will protect us from foreign antigens entering our body and rogue cells that are no longer under cell cycle control. Considering the most recent pandemic, our students must understand how our immune system works and the function of essential cells involved in this system. However, due to curriculum constraints, particularly at the community college, it may not be feasible for non-biology majors or biology majors to experience the fascinating inner workings of the immune system. Undergraduate students enrolled in an introductory biology, immunology, or microbiology course may not fully grasp the magnitude of receptor diversity embedded in our T cells. The creation of an in-class activity highlights the T cell receptor and provides a deeper understanding of T cell receptor (TCR) diversity. Instructors can use the activity in a lecture or laboratory setting where students work in small groups and use clay to construct different TCRs. Students explore TCR diversity using an interactive V(D)J table of antigen codes. The activity sought to engage students in the classroom to reinforce how T cell diversity contributes to the receptor recognizing the many antigens our bodies encounter daily. The ASPECT (Assessing Student Perspective of Engagement in Class Tool) survey was used to determine students' level of collaboration within their group and their experience with the activity. Results show that students welcomed the activity and felt their contributions and actions during the activity promoted learning. 
    more » « less
  2. Davida Smyth (Ed.)
    The gut microbiome and its physiological impacts on human and animal health is an area of research emphasis. Microbes themselves are invisible and may therefore be abstract and challenging to understand. It is therefore important to infuse this topic into undergraduate curricula, including Anatomy and Physiology courses, ideally through an active learning approach. To accomplish this, we developed a novel tactile teaching tool with guided-inquiry (TTT-GI) activity where students explored how the gut microbiome ferments carbohydrates to produce short chain fatty acids (SCFAs). This activity was implemented in two sections of a large-enrollment Human Anatomy and Physiology course at a research intensive (R1) university in the Spring of 2022 that was taught using a hyflex format. Students who attended class in person used commonly available building toys to assemble representative carbohydrates of varying structural complexity, whereas students who attended class virtually made these carbohydrate structures using a digital learning tool. Students then predicted how microbes within the gut would ferment different carbohydrates into SCFAs, as well as the physiological implications of the SCFAs. We assessed this activity to address three research questions, with 182 students comprising our sample. First, we evaluated if the activity learning objectives were achieved through implementation of a pre-and post-assessment schema. Our results revealed that all three learning objectives of this activity were attained. Next, we evaluated if the format in which this TTT-GI activity was implemented impacted student learning. While we found minimal and nonsignificant differences in student learning between those who attended in-person and those who attended remotely, we did find significant differences between the two course sections, which differed in length and spacing of the activity. Finally, we evaluated if this TTT-GI approach was impactful for diverse students. We observed modest and nonsignificant positive learning gains for some populations of students traditionally underrepresented in STEM (first-generation students and students with one or more disabilities). That said, we found that the greatest learning gains associated with this TTT-GI activity were observed in students who had taken previous upper-level biology coursework. 
    more » « less
  3. Ensuring the public has a fundamental understanding of human–microbe interactions, immune responses, and vaccines is a critical challenge in the midst of a pandemic. These topics are commonly taught in undergraduate- and graduate-level microbiology and immunology courses; however, creating engaging methods of teaching these complex concepts to students of all ages is necessary to keep younger students interested when science seems hard. Building on the Tactile Teaching Tools with Guided Inquiry Learning (TTT-GIL) method we used to create an interactive lac operon molecular puzzle, we report here two TTT-GIL activities designed to engage diverse learners from middle schoolers to masters students in exploring molecular interactions within the immune system. By pairing physical models with structured activities built on the constructivist framework of Process-Oriented Guided Inquiry Learning (POGIL), TTT-GIL activities guide learners through their interaction with the model, using the Learning Cycle to facilitate construction of new concepts. Moreover, TTT-GIL activities are designed utilizing Universal Design for Learning (UDL) principles to include all learners through multiple means of engagement, representation, and action. The TTT-GIL activities reported here include a web-enhanced activity designed to teach concepts related to antibody–epitope binding and specificity to deaf and hard-of-hearing middle and high school students in a remote setting and a team-based activity that simulates the evolution of the Major Histocompatibility Complex (MHC) haplotype of a population exposed to pathogens. These activities incorporate TTT-GIL to engage learners in the exploration of fundamental immunology concepts and can be adapted for use with learners of different levels and educational backgrounds. 
    more » « less
  4. Technical communication is essential for a career in physics, but communication skills are often not explicitly taught in physics undergraduate curricula. As a starting point for curricular integration, we investigated where and how writing is currently occurring in the core undergraduate physics courses at University of Illinois Urbana-Champaign. We examined course materials to identify where writing is explicitly or implicitly referenced, the genres that were assigned, and writing concepts that were represented. Analyzing course materials allowed us to identify a wide range of activities and assignments related to writing. We observed that implicit references to writing are prevalent, writing activities are weighted toward upper-level classes, and the most common genres are related to laboratory activities. Writing concepts that occurred frequently in upper-level laboratory courses correspond to disciplinary values of precision and clarity, while concepts of novelty and evidence were infrequent. This type of assessment can help identify gaps in the curriculum, allowing us to be more deliberate about how we develop students’ communication skills. 
    more » « less
  5. Preparing for high-stakes exams in introductory physics courses is generally a self-regulated activity. Compared to other exam reviewing strategies, doing practice exams has been shown to help students recognize gaps in their knowledge, encourage active practicing, and produce long-term retention. However, many students, particularly students who are struggling with the course material, are not guided by research-based study strategies and do not use practice exams effectively. Using data collected from a fully online course in Spring 2021, this study examines two interventions aimed at improving student selfregulated studying behaviors and enhancing student metacognition during exam preparation. We found that a modified format of online practice exams with one attempt per question and delayed feedback, increases the accuracy of feedback about student readiness for exams but does not change the accuracy of their predicted exam scores or studying behaviors. Additionally, an added mock exam one week before the actual exam impacts students’ intentions for studying but does not impact actual study behaviors or facilitate metacognition. These results suggest that interventions designed to improve exam preparation likely need to include explicit instruction on study strategies and student beliefs about learning. 
    more » « less