We study the problem of online multi-task learning where the tasks are performed within similar but not necessarily identical multi-armed bandit environments. In particular, we study how a learner can improve its overall performance across multiple related tasks through robust transfer of knowledge. While an upper confidence bound (UCB)-based algorithm has recently been shown to achieve nearly-optimal performance guarantees in a setting where all tasks are solved concurrently, it remains unclear whether Thompson sampling (TS) algorithms, which have superior empirical performance in general, share similar theoretical properties. In this work, we present a TS-type algorithm for a more general online multi-task learning protocol, which extends the concurrent setting. We provide its frequentist analysis and prove that it is also nearly-optimal using a novel concentration inequality for multi-task data aggregation at random stopping times. Finally, we evaluate the algorithm on synthetic data and show that the TS-type algorithm enjoys superior empirical performance in comparison with the UCB-based algorithm and a baseline algorithm that performs TS for each individual task without transfer. 
                        more » 
                        « less   
                    This content will become publicly available on May 1, 2026
                            
                            Adaptive data collection for robust learning across multiple distributions
                        
                    
    
            We propose a framework for adaptive data collection aimed at robust learning in multi-distribution scenarios under a fixed data collection budget. In each round, the algorithm selects a distribution source to sample from for data collection and updates the model parameters accordingly. The objective is to find the model parameters that minimize the expected loss across all the data sources. Our approach integrates upper-confidence-bound (UCB) sampling with online gradient descent (OGD) to dynamically collect and annotate data from multiple sources. By bridging online optimization and multi-armed bandits, we provide theoretical guarantees for our UCB-OGD approach, demonstrating that it achieves a minimax regret of O(T 1 2 (K ln T) 1 2 ) over K data sources after T rounds. We further provide a lower bound showing that the result is optimal up to a ln T factor. Extensive evaluations on standard datasets and a real-world testbed for object detection in smartcity intersections validate the consistent performance improvements of our method compared to baselines such as random sampling and various active learning methods. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2038984
- PAR ID:
- 10639774
- Publisher / Repository:
- in Proc. ICML’25, 2025
- Date Published:
- Format(s):
- Medium: X
- Location:
- Vancouver, Canada
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We study a variant of the contextual bandit problem where an agent can intervene through a set of stochastic expert policies. Given a fixed context, each expert samples actions from a fixed conditional distribution. The agent seeks to remain competitive with the “best” among the given set of experts. We propose the Divergence-based Upper Confidence Bound (D-UCB) algorithm that uses importance sampling to share information across experts and provide horizon-independent constant regret bounds that only scale linearly in the number of experts. We also provide the Empirical D-UCB (ED-UCB) algorithm that can function with only approximate knowledge of expert distributions. Further, we investigate the episodic setting where the agent interacts with an environment that changes over episodes. Each episode can have different context and reward distributions resulting in the best expert changing across episodes. We show that by bootstrapping from\(\mathcal {O}(N\log (NT^2\sqrt {E}))\)samples, ED-UCB guarantees a regret that scales as\(\mathcal {O}(E(N+1) + \frac{N\sqrt {E}}{T^2})\)forNexperts overEepisodes, each of lengthT. We finally empirically validate our findings through simulations.more » « less
- 
            We study model-free reinforcement learning (RL) algorithms for infinite-horizon average-reward Markov decision process (MDP), which is more appropriate for applications that involve continuing operations not divided into episodes. In contrast to episodic/discounted MDPs, theoretical understanding of model-free RL algorithms is relatively inadequate for the average-reward setting. In this paper, we consider both the online setting and the setting with access to a simulator. We develop computationally efficient model-free algorithms that achieve sharper guarantees on regret/sample complexity compared with existing results. In the online setting, we design an algorithm, UCB-AVG, based on an optimistic variant of variance-reduced Q-learning. We show that UCB-AVG achieves a regret bound $$\widetilde{O}(S^5A^2sp(h^*)\sqrt{T})$$ after $$T$$ steps, where $$S\times A$$ is the size of state-action space, and $sp(h^*)$ the span of the optimal bias function. Our result provides the first computationally efficient model-free algorithm that achieves the optimal dependence in $$T$$ (up to log factors) for weakly communicating MDPs, which is necessary for low regret. In contrast, prior results either are suboptimal in $$T$$ or require strong assumptions of ergodicity or uniformly mixing of MDPs. In the simulator setting, we adapt the idea of UCB-AVG to develop a model-free algorithm that finds an $$\epsilon$$-optimal policy with sample complexity $$\widetilde{O}(SAsp^2(h^*)\epsilon^{-2} + S^2Asp(h^*)\epsilon^{-1}).$$ This sample complexity is near-optimal for weakly communicating MDPs, in view of the minimax lower bound $$\Omega(SAsp(^*)\epsilon^{-2})$$. Existing work mainly focuses on ergodic MDPs and the results typically depend on $$t_{mix},$$ the worst-case mixing time induced by a policy. We remark that the diameter $$D$$ and mixing time $$t_{mix}$$ are both lower bounded by $sp(h^*)$, and $$t_{mix}$$ can be arbitrarily large for certain MDPs. On the technical side, our approach integrates two key ideas: learning an $$\gamma$$-discounted MDP as an approximation, and leveraging reference-advantage decomposition for variance in optimistic Q-learning. As recognized in prior work, a naive approximation by discounted MDPs results in suboptimal guarantees. A distinguishing feature of our method is maintaining estimates of value-difference between state pairs to provide a sharper bound on the variance of reference advantage. We also crucially use a careful choice of the discounted factor $$\gamma$$ to balance approximation error due to discounting and the statistical learning error, and we are able to maintain a good-quality reference value function with $O(SA)$ space complexity.more » « less
- 
            We prove novel algorithmic guarantees for several online problems in the smoothed analysis model. In this model, at each time step an adversary chooses an input distribution with density function bounded above pointwise by \(\tfrac{1}{\sigma }\)times that of the uniform distribution; nature then samples an input from this distribution. Here, σ is a parameter that interpolates between the extremes of worst-case and average case analysis. Crucially, our results hold foradaptiveadversaries that can base their choice of input distribution on the decisions of the algorithm and the realizations of the inputs in the previous time steps. An adaptive adversary can nontrivially correlate inputs at different time steps with each other and with the algorithm’s current state; this appears to rule out the standard proof approaches in smoothed analysis. This paper presents a general technique for proving smoothed algorithmic guarantees against adaptive adversaries, in effect reducing the setting of an adaptive adversary to the much simpler case of an oblivious adversary (i.e., an adversary that commits in advance to the entire sequence of input distributions). We apply this technique to prove strong smoothed guarantees for three different problems:(1)Online learning: We consider the online prediction problem, where instances are generated from an adaptive sequence of σ-smooth distributions and the hypothesis class has VC dimensiond. We bound the regret by\(\tilde{O}(\sqrt {T d\ln (1/\sigma)} + d\ln (T/\sigma))\)and provide a near-matching lower bound. Our result shows that under smoothed analysis, learnability against adaptive adversaries is characterized by the finiteness of the VC dimension. This is as opposed to the worst-case analysis, where online learnability is characterized by Littlestone dimension (which is infinite even in the extremely restricted case of one-dimensional threshold functions). Our results fully answer an open question of Rakhlin et al. [64].(2)Online discrepancy minimization: We consider the setting of the online Komlós problem, where the input is generated from an adaptive sequence of σ-smooth and isotropic distributions on the ℓ2unit ball. We bound the ℓ∞norm of the discrepancy vector by\(\tilde{O}(\ln ^2(\frac{nT}{\sigma }))\). This is as opposed to the worst-case analysis, where the tight discrepancy bound is\(\Theta (\sqrt {T/n})\). We show such\(\mathrm{polylog}(nT/\sigma)\)discrepancy guarantees are not achievable for non-isotropic σ-smooth distributions.(3)Dispersion in online optimization: We consider online optimization with piecewise Lipschitz functions where functions with ℓ discontinuities are chosen by a smoothed adaptive adversary and show that the resulting sequence is\(({\sigma }/{\sqrt {T\ell }}, \tilde{O}(\sqrt {T\ell }))\)-dispersed. That is, every ball of radius\({\sigma }/{\sqrt {T\ell }}\)is split by\(\tilde{O}(\sqrt {T\ell })\)of the partitions made by these functions. This result matches the dispersion parameters of Balcan et al. [13] for oblivious smooth adversaries, up to logarithmic factors. On the other hand, worst-case sequences are trivially (0,T)-dispersed.1more » « less
- 
            We consider the problem where N agents collaboratively interact with an instance of a stochastic K arm bandit problem for K N. The agents aim to simultaneously minimize the cumulative regret over all the agents for a total of T time steps, the number of communication rounds, and the number of bits in each communication round. We present Limited Communication Collaboration - Upper Confidence Bound (LCC-UCB), a doubling-epoch based algorithm where each agent communicates only after the end of the epoch and shares the index of the best arm it knows. With our algorithm, LCC-UCB, each agent enjoys a regret of O√(K/N + N)T, communicates for O(log T) steps and broadcasts O(log K) bits in each communication step. We extend the work to sparse graphs with maximum degree KG and diameter D to propose LCC-UCB-GRAPH which enjoys a regret bound of O√(D(K/N + KG)DT). Finally, we empirically show that the LCC-UCB and the LCC-UCB-GRAPH algorithms perform well and outperform strategies that communicate through a central node.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
