Edge intelligence through in-sensor and near-sensor computing for the artificial intelligence of things
- PAR ID:
- 10639868
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj Unconventional Computing
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 3004-8672
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Intelligence involves processing sensory experiences into representations useful for prediction. Understanding sensory experiences and building these contextual representations without prior knowledge of sensor models and environment is a challenging unsupervised learning problem. Current machine learning methods process new sensory data using prior knowledge defined by either domain knowledge or datasets. When datasets are not available, data acquisition is needed, though automating exploration in support of learning is still an unsolved problem. Here we develop a method that enables agents to efficiently collect data for learning a predictive sensor model—without requiring domain knowledge, human input, or previously existing data—using ergodicity to specify the data acquisition process. This approach is based entirely on data-driven sensor characteristics rather than predefined knowledge of the sensor model and its physical characteristics. We learn higher quality models with lower energy expenditure during exploration for data acquisition compared to competing approaches, including both random sampling and information maximization. In addition to applications in autonomy, our approach provides a potential model of how animals use their motor control to develop high quality models of their sensors (sight, sound, touch) before having knowledge of their sensor capabilities or their surrounding environment.more » « less
-
With the increasing integration of machine learning into IoT devices, managing energy consumption and data transmission has become a critical challenge. Many IoT applications depend on complex computations performed on server-side infrastructure, necessitating efficient methods to reduce unnecessary data transmission. One promising solution involves deploying compact machine learning models near sensors, enabling intelligent identification and transmission of only relevant data frames. However, existing near-sensor models lack adaptability, as they require extensive pre-training and are often rigidly configured prior to deployment. This paper proposes a novel framework that fuses online learning, active learning, and knowledge distillation to enable adaptive, resource-efficient near-sensor intelligence. Our approach allows near-sensor models to dynamically fine-tune their parameters post-deployment using online learning, eliminating the need for extensive pre-labeling and training. Through a sequential training and execution process, the framework achieves continuous adaptability without prior knowledge of the deployment environment. To enhance performance while preserving model efficiency, we integrate knowledge distillation, enabling the transfer of critical insights from a larger teacher model to a compact student model. Additionally, active learning reduces the required training data while maintaining competitive performance. We validated our framework on both benchmark data from the MS COCO dataset and in a simulated IoT environment. The results demonstrate significant improvements in energy efficiency and data transmission optimization, highlighting the practical applicability of our method in real-world IoT scenarios.more » « less
An official website of the United States government
