Abstract In this review, we focus on how purple non-sulfur bacteria can be leveraged for sustainable bioproduction to support the circular economy. We discuss the state of the field with respect to the use of purple bacteria for energy production, their role in wastewater treatment, as a fertilizer, and as a chassis for bioplastic production. We explore their ability to serve as single-cell protein and production platforms for fine chemicals from waste materials. We also introduce more Avant-Garde technologies that leverage the unique metabolisms of purple bacteria, including microbial electrosynthesis and co-culture. These technologies will be pivotal in our efforts to mitigate climate change and circularize the economy in the next two decades. One-sentence summaryPurple non-sulfur bacteria are utilized for a range of biotechnological applications, including the production of bio-energy, single cell protein, fertilizer, bioplastics, fine chemicals, in wastewater treatment and in novel applications like co-cultures and microbial electrosynthesis.
more »
« less
Purple non-sulfur bacteria and the circular economy
Purple non-sulfur bacteria and the circular economyArpita Bose, Associate Professor at Washington University in St. Louis, discusses the potential of microbial solutions in supporting sustainable and environmentally responsible alternatives to the traditional linear economy. Earth’s climate is undergoing unprecedented changes due to human activities, primarily the emission of greenhouse gases. Widespread petroleum-based production of fuels and plastics releases large amounts of pollution, contributing to rising global temperatures, extreme weather events, and ecosystem disruptions. Finding feasible solutions to the climate crisis is crucial to preserve essential resources and protect human and environmental health. Harnessing and strengthening the natural capabilities of microorganisms and microbial communities with synthetic biology will be the key to reducing and upcycling waste for a greener global economy.
more »
« less
- PAR ID:
- 10639907
- Publisher / Repository:
- Open Access Government
- Date Published:
- Journal Name:
- Open Access Government
- Volume:
- 41
- Issue:
- 1
- ISSN:
- 2516-3817
- Page Range / eLocation ID:
- 214 to 215
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Buchan, Alison (Ed.)ABSTRACT Climate change jeopardizes human health, global biodiversity, and sustainability of the biosphere. To make reliable predictions about climate change, scientists use Earth system models (ESMs) that integrate physical, chemical, and biological processes occurring on land, the oceans, and the atmosphere. Although critical for catalyzing coupled biogeochemical processes, microorganisms have traditionally been left out of ESMs. Here, we generate a “top 10” list of priorities, opportunities, and challenges for the explicit integration of microorganisms into ESMs. We discuss the need for coarse-graining microbial information into functionally relevant categories, as well as the capacity for microorganisms to rapidly evolve in response to climate-change drivers. Microbiologists are uniquely positioned to collect novel and valuable information necessary for next-generation ESMs, but this requires data harmonization and transdisciplinary collaboration to effectively guide adaptation strategies and mitigation policy.more » « less
-
Abstract Nitrogen is a critical component of the economy, food security, and planetary health. Many of the world's sustainability targets hinge on global nitrogen solutions, which, in turn, contribute lasting benefits for (i) world hunger; (ii) soil, air, and water quality; (iii) climate change mitigation; and (iv) biodiversity conservation. Balancing the projected rise in agricultural nitrogen demands while achieving these 21st century ideals will require policies to coordinate solutions among technologies, consumer choice, and socioeconomic transformation.more » « less
-
McMahon, Katherine (Ed.)ABSTRACT Temperature significantly impacts microbial communities’ composition and function, which plays a vital role in the global carbon cycle that determines climate change. Nutrient influxes often accompany rising temperatures due to human activity. While ecological interactions between different microorganisms could shape their response to environmental change, we do not understand how predation may influence these responses in a warmer and increasingly nutrient-rich world. Here, we assess whether predation by a ciliate community of bacterial consumers influences changes in the diversity, biomass, and function of a freshwater prokaryotic community under different temperature and nutrient conditions. We found that predator presence mediates the effects of temperature and nutrients on the total prokaryotic community biomass and composition through various mechanisms, including direct and indirect effects. However, the total community function was resilient. Our study supports previous findings that temperature and nutrients are essential drivers of microbial community composition and function but also demonstrates how predation can mediate these effects, indicating that the biotic context is as important as the abiotic context to understanding microbial responses to novel climates.IMPORTANCEWhile the importance of the abiotic environment in microbial communities has long been acknowledged, how prevalent ecological interactions like predation may influence these microbial community responses to shifting abiotic conditions is largely unknown. Our study addresses the complex interplay between temperature, nutrients, predation, and their joint effects on microbial community diversity and function. Our findings suggest that while temperature and nutrients are fundamental drivers of microbial community dynamics, the presence of predators significantly alters these responses. Our study underscores the impact of abiotic factors on microbial communities and the importance of accounting for the biotic context in which these occur to understand, let alone predict, these responses properly.more » « less
-
Giovannoni, Stephen J; Weedon, James (Ed.)ABSTRACT Rapid climate change in the Arctic is altering microbial structure and function, with important consequences for the global ecosystem. Emerging evidence suggests organisms in higher trophic levels may also influence microbial communities, but whether warming alters these effects is unclear. Wolf spiders are dominant Arctic predators whose densities are expected to increase with warming. These predators have temperature-dependent effects on decomposition via their consumption of fungal-feeding detritivores, suggesting they may indirectly affect the microbial structure as well. To address this, we used a fully factorial mesocosm experiment to test the effects of wolf spider density and warming on litter microbial structure in Arctic tundra. We deployed replicate litter bags at the surface and belowground in the organic soil profile and analyzed the litter for bacterial and fungal community structure, mass loss, and nutrient characteristics after 2 and 14 months. We found there were significant interactive effects of wolf spider density and warming on fungal but not bacterial communities. Specifically, higher wolf spider densities caused greater fungal diversity under ambient temperature but lower fungal diversity under warming at the soil surface. We also observed interactive treatment effects on fungal composition belowground. Wolf spider density influenced surface bacterial composition, but the effects did not change with warming. These findings suggest a widespread predator can have indirect, cascading effects on litter microbes and that effects on fungi specifically shift under future expected levels of warming. Overall, our study highlights that trophic interactions may play important, albeit overlooked, roles in driving microbial responses to warming in Arctic terrestrial ecosystems. IMPORTANCEThe Arctic contains nearly half of the global pool of soil organic carbon and is one of the fastest warming regions on the planet. Accelerated decomposition of soil organic carbon due to warming could cause positive feedbacks to climate change through increased greenhouse gas emissions; thus, changes in ecological dynamics in this region are of global relevance. Microbial structure is an important driver of decomposition and is affected by both abiotic and biotic conditions. Yet how activities of soil-dwelling organisms in higher trophic levels influence microbial structure and function is unclear. In this study, we demonstrate that predicted changes in abundances of a dominant predator and warming interactively affect the structure of litter-dwelling fungal communities in the Arctic. These findings suggest predators may have widespread, indirect cascading effects on microbial communities, which could influence ecosystem responses to future climate change.more » « less
An official website of the United States government

