skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 3, 2026

Title: Effective Selection and Targeted Passivation for Different Defect Types by Ammonium Salts in Perovskite Solar Cells
Abstract The optimal selection of alkyl chains and halogen ions in ammonium salts for addressing specific defect types in perovskite films remains unclear, although ammonium salts emerged as a promising strategy to enhance the performance of perovskite solar cells (PSCs). Herein, four ammonium salts are introduced with different alkyl chain types and halogen ions to passivate perovskite films. Branched‐alkyl chain ammonium salts exhibited superior passivation effects compared to linear‐alkyl chain salts, with the alkyl chain structure having a more significant impact on device performance than the halogen ion component. In addition, DFT calculations are performed to investigate which defect types in perovskite films are most effectively passivated by different alkyl chain types and halogen ions in ammonium salts. Branched‐alkyl chain ammonium salts demonstrated superior passivation effects on VPband VFAdefects in perovskite films compared to linear‐alkyl chain salts, while exhibiting similar passivation effects for VIdefects. PSCs passivated with tert‐OAI achieved an impressive efficiency of 25.49%, with a Vocof 1.19 V, a Jscof 25.40 mA cm2, and an FF of 84.34%. This work highlights a targeted ammonium salt passivation strategy tailored to address different defect types in perovskite films, accounting for variations in perovskite composition and fabrication environments.  more » « less
Award ID(s):
2326788 2418390 2242467 2423854
PAR ID:
10640363
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract High‐performance tin‐lead perovskite solar cells (PSCs) are needed for all‐perovskite‐tandem solar cells. However, iodide related fast photodegradation severely limits the operational stability of Sn‐Pb perovskites despite the demonstrated high efficiency and thermal stability. Herein, this work employs an alkylammonium pseudo‐halogen additive to enhance the power conversion efficiency (PCE) and photostability of methylammonium (MA)‐free, Sn‐Pb PSCs. Density functional theory (DFT) calculations reveal that the pseudo‐halogen tetrafluoroborate (BF4) has strong binding capacity with metal ions (Sn2+/Pb2+) in the Sn‐Pb perovskite lattice, which lowers iodine vacancy formation. Upon combining BF4with an octylammonium (OA+) cation, the PCE of the device with a built‐in light‐scattering layer is boosted to 23.7%, which represents a new record for Sn‐Pb PSCs. The improved efficiency benefits from the suppressed defect density. Under continuous 1 sun illumination, the OABF4embodied PSCs show slower generation of interstitial iodides and iodine, which greatly improves the device photostability under open‐circuit condition. Moreover, the device based on OABF4retains 88% of the initial PCE for 1000 h under the maximum‐power‐point tracking (MPPT) without cooling. 
    more » « less
  2. Abstract Surface passivation of perovskite solar cells (PSCs) using a low‐cost industrial organic pigment quinacridone (QA) is presented. The procedure involves solution processing a soluble derivative of QA,N,N‐bis(tert‐butyloxycarbonyl)‐quinacridone (TBOC‐QA), followed by thermal annealing to convert TBOC‐QA into insoluble QA. With halide perovskite thin films coated by QA, PSCs based on methylammonium lead iodide (MAPbI3) showed significantly improved performance with remarkable stability. A PCE of 21.1 % was achieved, which is much higher than 18.9 % recorded for the unmodified devices. The QA coating with exceptional insolubility and hydrophobicity also led to greatly enhanced contact angle from 35.6° for the pristine MAPbI3thin films to 77.2° for QA coated MAPbI3thin films. The stability of QA passivated MAPbI3perovskite thin films and PSCs were significantly enhanced, retaining about 90 % of the initial efficiencies after more than 1000 hours storage under ambient conditions. 
    more » « less
  3. Abstract Dimethylammonium lead iodide (DMAPbIx) has the potential to address the phase stability issue of inorganic perovskite solar cells (PSCs). In this study, the crystallinity, phase structure, defect states, and crystal growth habits of DMAPbIxare controlled by adjusting thexvalue during synthesis, where N,N‐dimethylacetamide (DMAC) is used as the solvent to regulate perovskite film growth. Furthermore, large‐area CsPbI2.85Br0.15perovskite films with preferred oriented growth are achieved using the optimizedxvalue in DMAPbIxthrough the slot‐die coating method. The inorganic PSCs, with a n‐i‐p structure and the active area of 0.04 cm2, achieve a champion power conversion efficiency (PCE) of 19.82%, with an open‐circuit voltage (Voc) of 1.16 V based on perovskite films formed by slot‐die coating. This work provides important insights into the DMAPbIx‐based method for fabricating high‐quality inorganic perovskite films, and paves the way for large‐area inorganic PSCs fabrication for practical applications. 
    more » « less
  4. Abstract The ability to passivate defects and modulate the interface energy‐level alignment (IEA) is key to boost the performance of perovskite solar cells (PSCs). Herein, we report a robust route that simultaneously allows defect passivation and reduced energy difference between perovskite and hole transport layer (HTL) via the judicious placement of polar chlorine‐terminated silane molecules at the interface. Density functional theory (DFT) points to effective passivation of the halide vacancies on perovskite surface by the silane chlorine atoms. An integrated experimental and DFT study demonstrates that the dipole layer formed by the silane molecules decreases the perovskite work function, imparting an Ohmic character to the perovskite/HTL contact. The corresponding PSCs manifest a nearly 20 % increase in power conversion efficiency over pristine devices and a markedly enhanced device stability. As such, the use of polar molecules to passivate defects and tailor the IEA in PSCs presents a promising platform to advance the performance of PSCs. 
    more » « less
  5. Abstract Poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is a popular hole transport material in perovskite solar cells (PSCs). However, the devices with PEDOT:PSS exhibit large open‐circuit voltage (Voc) loss and low efficiency, which is attributed to mismatched energy level alignment and the poor interface of PEDOT:PSS and perovskite. Here, three polymer analogues to polyaniline (PANI), PANI–carbazole (P1), PANI–phenoxazine (P2), and PANI–phenothiazine (P3) are designed with different energy levels to modify the interface between PEDOT:PSS and the perovskite layer and improve the device performance. The effects of the polymers on the device performance are demonstrated by evaluating the work function adjustment, perovskite growth control, and interface modification in MAPbI3‐based PSCs. Low bandgap Sn–Pb‐based PSCs are also fabricated to confirm the effects of the polymers. Three effects are evaluated through the comparison study of PEDOT:PSS‐based organic solar cells and MAPbI3 PSCs based on the PEDOT:PSS modified by P1, P2, and P3. The order of contribution for the three effects is work function adjustment > surface modification > perovskite growth control. MAPbI3 PSCs modified with P2 exhibit a highVocof 1.13 V and a high‐power conversion efficiency of 21.06%. This work provides the fundamental understanding of the interface passivation effects for PEDOT:PSS‐based optoelectronic devices. 
    more » « less