skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cage Effect of Nitrogen Oxide Radicals Enables Li‐NO x Cell with a 3.8 V Cell Voltage
Abstract The utilization of redox‐active gas as cathode materials has been proposed as a promising approach to meet the demand for next‐generation battery technologies. Toward this end, nitrogen oxides (NOx)—inexpensive, abundant gases readily produced from ammonia on an industrial scale—is a promising energy storage media; however, its utilization as cathode material has not been achieved. In this work, the cage effect of NO and NO2radicals are utilized to stabilize the charge product of Li‐NOxcell as N2O3. This cell operates via reversible redox of LiNO3to N2O3, achieving a specific capacity of 1,570 mA h gcarbon−1or 25 mA h cmelectrode−2 at a full cell voltage of 3.85 V with an average energy efficiency of 89% at a current density up to 2 mA cmelectrode−2. These metrics represent one of the highest areal capacity, current density, cell voltage, and energy efficiency reported for a metal‐gas cells.  more » « less
Award ID(s):
2124604 2419596
PAR ID:
10640388
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
37
Issue:
43
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The broad employment of water electrolysis for hydrogen (H2) production is restricted by its large voltage requirement and low energy conversion efficiency because of the sluggish oxygen evolution reaction (OER). Herein, we report a strategy to replace OER with a thermodynamically more favorable reaction, the partial oxidation of formaldehyde to formate under alkaline conditions, using a Cu3Ag7electrocatalyst. Such a strategy not only produces more valuable anodic product than O2but also releases H2at the anode with a small voltage input. Density functional theory studies indicate the H2C(OH)O intermediate from formaldehyde hydration can be better stabilized on Cu3Ag7than on Cu or Ag, leading to a lower C-H cleavage barrier. A two-electrode electrolyzer employing an electrocatalyst of Cu3Ag7(+)||Ni3N/Ni(–) can produce H2at both anode and cathode simultaneously with an apparent 200% Faradaic efficiency, reaching a current density of 500 mA/cm2with a cell voltage of only 0.60 V. 
    more » « less
  2. Abstract Ni‐rich LiNi0.8Co0.1Mn0.1O2(NCM811) has been considered as a promising cathode material for high energy density lithium‐ion batteries. However, it experiences undesirable interfacial side‐reactions with the electrolyte, which lead to a rapid capacity decay. In this work, a homogeneous precipitation method is proposed for forming a uniform silicon dioxide (SiO2) coating on the NCM811 surface. The strong Si−O network provided a stable protective layer between the NCM811 active material and electrolyte to improve the electrochemical stability. As a result, the NCM811@SiO2cathode showed superior cycling stability (84.9 % after 100 cycles at 0.2 C) and rate capability (142.7 mA h g−1at 5 C) compared to the pristine NCM811 cathode (56.6 % after 100 cycles, 127.9 mA h g−1at 5 C). Moreover, the SiO2coating effectively suppressed voltage decay and pulverization of the NCM811 particles during long term cycling. This uniform coating technique offers a viable approach for stabilizing Ni‐rich cathode materials for high‐energy density lithium‐ion batteries. 
    more » « less
  3. Abstract Aldehyde‐assisted water electrolysis offers an attractive pathway for energy‐saving bipolar hydrogen production with combined faradaic efficiency (FE) of 200% while converting formaldehyde into value‐added formate. Herein we report the design and synthesis of noble metal‐free Cu6Sn5alloy as a highly effective electrocatalyst for formaldehyde electro‐oxidative dehydrogenation, demonstrating a geometric current density of 915 ± 46 mA cm−2at 0.4 V versus reversible hydrogen electrode, outperforming many noble metal electrocatalysts reported previously. The formaldehyde‐assisted water electrolyzer delivers 100 mA cm−2at a low cell voltage of 0.124 V, and a current density of 486 ± 20 mA cm−2at a cell voltage of 0.6 V without any iR compensation and exhibits nearly 200% faradaic efficiency for bipolar hydrogen production at 100 mA cm−2in 88 h long‐term operation. Density functional theory calculations further confirm the notably lowered barriers for dehydrogenation and Tafel steps on the Cu₆Sn₅ surface compared to Cu, underscoring its potential as a highly active catalyst. 
    more » « less
  4. Abstract There is a strong interest in finding highly soluble redox compounds to improve the energy density of redox flow batteries (RFBs). However, the performance of electrolytes is often negatively influenced by high solute concentration. Herein, we designed a high‐potential (0.5 V vs. Ag/Ag+) catholyte for RFBs, where the charged and discharged species are both gaseous nitrogen oxides (NOx). These species can be liberated from the liquid electrolyte and stored in a separate gas container, allowing scale‐up of storage capacity without increasing the concentration and volume of the electrolyte. The oxidation of NO in the presence of NO3affords N2O3, and the reduction of N2O3regenerates NO and NO3, together affording the electrochemical reaction: NO3+3 NO⇌2 N2O3+ewith a low mass/charge ratio of 152 grams per mole of stored electron. A proof‐of‐concept NOxsymmetric H‐cell shows 200 stable cycles over 400 hours with >97 % Coulombic efficiency and negligible capacity decay. 
    more » « less
  5. Regulating the selectivity toward a target hydrocarbon product is still the focus of CO2electroreduction. Here, we discover that the original surface Cu species in Cu gas‐diffusion electrodes plays a more important role than the surface roughness, local pH, and facet in governing the selectivity toward C1or C2hydrocarbons. The selectivity toward C2H4progressively increases, while CH4decreases steadily upon lowering the Cu oxidation species fraction. At a relatively low electrodeposition voltage of 1.5 V, the Cu gas‐diffusion electrode with the highest Cuδ+/Cu0ratio favors the pathways of hydrogenation to form CH4with maximum Faradaic efficiency of 65.4% and partial current density of 228 mA cm−2at −0.83 V vs RHE. At 2.0 V, the Cu gas‐diffusion electrode with the lowest Cuδ+/Cu0ratio prefers C–C coupling to form C2+products with Faradaic efficiency topping 80.1% at −0.75 V vs RHE, where the Faradaic efficiency of C2H4accounts for 46.4% and the partial current density of C2H4achieves 279 mA cm−2. This work demonstrates that the selectivity from CH4to C2H4is switchable by tuning surface Cu species composition of Cu gas‐diffusion electrodes. 
    more » « less