skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Defining stream riparian zones across multidimensional environmental gradients
Abstract Riparian zones are a critical terrestrial‐aquatic ecotone. They play important roles in ecosystems including (1) harboring biodiversity, (2) influencing light and carbon fluxes to aquatic food webs, (3) maintaining water quality and streamflow, (4) enhancing aquatic habitat, (5) influencing greenhouse gas production, and (6) sequestering carbon. Defining what qualifies as a riparian zone is a first step to delineation. Many definitions of riparian boundaries focus on static attributes or a subset of potential functions without recognizing that they are spatially continuous, temporally dynamic, and multi‐dimensional. We emphasize that definitions should consider multiple ecological and biogeochemical functions and physical gradients, and explore how this approach influences spatial characterization of riparian zones. One or more of the following properties can guide riparian delineation: (1) distinct species, elevated biodiversity, or species with specific adaptations to flooding and inundation near streams relative to nearby upland areas; (2) unique vegetation structure directly influencing irradiance or organic material inputs to aquatic ecosystems; (3) hydrologic and geomorphic features or processes maintaining floodplains; (4) hydric soil properties that differ from the uplands; and/or (5) elevated retention of dissolved and suspended materials relative to adjacent uplands. Considering these properties for an operational and dynamic definition of riparian zones recognizes that riparian boundaries vary in space (e.g., variation of riparian corridor widths within or among watersheds) and time (e.g., responses to hydrological variance and climate change). Inclusive definitions addressing multiple riparian functions could facilitate attainment of research and management goals by linking properties of interest to specific outcomes.  more » « less
Award ID(s):
2025755
PAR ID:
10640414
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Environmental Quality
ISSN:
0047-2425
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Climate zones play a significant role in shaping the forest ecosystems located within them by influencing multiple ecological processes, including growth, disturbances, and species interactions. Therefore, delineation of current and future climate zones is essential to establish a framework for understanding and predicting shifts in forest ecosystems. In this study, we developed and applied an efficient approach to delineate regional climate zones in the northeastern United States and maritime Canada, aiming to characterize potential shifts in climate zones and discuss associated changes in forest ecosystems. The approach comprised five steps: climate data dimensionality reduction, sampling scenario design, cluster generation, climate zone delineation, and zone shift prediction. The climate zones in the study area were delineated into four different orders, with increasing subzone resolutions of 3, 9, 15, and 21. Furthermore, projected climate normals under Shared Socioeconomic Pathways 4.5 and 8.5 scenarios were used to predict the shifts in climate zones until 2100. Our findings indicate that climate zones characterized by higher temperatures and lower precipitation are expected to become more prevalent, potentially becoming the dominant climate condition across the entire region. These changes are likely to alter regional forest composition, structure, and productivity. In short, such shifts in climate underscore the significant impact of environmental change on forest ecosystem dynamics and carbon sequestration potential. 
    more » « less
  2. Riparian zones are areas of transition between aquatic and terrestrial ecosystems, and their vegetation provides many important ecosystem services that are becoming of greater importance due to the changing climate. To understand riparian conditions along headwater tropical streams in terms of species composition and structure, we surveyed riparian tree communities and physical conditions in adjacent streams in the Luquillo Experimental Forest. We determined riparian substrate condition visually by estimating ground and vegetation attributes and measuring slope and elevation in a series of riparian plots at three stream sites. We determined riparian forest composition by identifying stem species and recording their height and diameter in plots. Our results demonstrated that elevation and slope were the main differences among sites, while all sites had similar ground and vegetation conditions. Species composition in all sites was characterized by hydrophytic species. However, although the most abundant species were generalists, we also found many species that were only observed once or twice per site. Overall, our results indicate that although recent and major hurricanes influence structure and composition at this site, riparian areas still maintain a large proportion of hydrophytic and rare tree species. 
    more » « less
  3. Abstract Over the past several decades, we have increased our understanding of the influences of plant genetics on associated communities and ecosystem functions. These influences have been shown at both broad spatial scales and across many plant families, creating an active subdiscipline of ecology research focused on genes‐to‐ecosystems connections. One complex aspect of plant genetics is the distinction between males and females in dioecious plants. The genetic determinants of plant sex are poorly understood for most plants, but the influences of plant sex on morphological, physiological, and chemical plant traits are well‐studied. We argue that these plant traits, controlled by plant sex, may have wide‐reaching influences on both terrestrial and aquatic communities and ecosystem processes, particularly for riparian plants. Here we systematically review the influences of plant sex on plant traits, influences of plant traits on terrestrial community members, and how interactions between plant traits and terrestrial community members can influence terrestrial ecosystem functions in riparian forests. We then extend these influences into adjacent aquatic ecosystem functions and aquatic communities to explore how plant sex might influence linked terrestrial‐aquatic systems as well as the physical structure of riparian systems. This review highlights data gaps in empirical studies exploring the direct influences of plant sex on communities and ecosystems but draws inference from community and ecosystem genetics. Overall, this review highlights how variation by plant sex has implications for climate change adaptations in riparian habitats, the evolution and range shifts of riparian species and the methods used for conserving and restoring riparian systems. 
    more » « less
  4. Abstract Riparian zones are key ecotones that buffer aquatic ecosystems through removal of nitrogen (N) via processes such as denitrification. However, how dams alter riparian N cycling and buffering capacity is poorly understood. Here, we hypothesized that elevated groundwater and anoxia due to the backup of stream water above milldams may enhance denitrification. We assessed denitrification rates (using denitrification enzyme assays) and potential controlling factors in riparian sediments at various depths upstream and downstream of two relict U.S. mid‐Atlantic milldams. Denitrification was not significantly different between upstream and downstream, although was greater per river km upstream considering deeper and wider geometries. Further, denitrification typically occurred in hydrologically variable shallow sediments where nitrate‐N and organic matter were most concentrated. At depths below 1 m, both denitrification and nitrate‐N decreased while ammonium‐N concentrations substantially increased, indicating suppression of ammonium consumption or dissimilatory nitrate reduction to ammonium. These results suggest that denitrification occurs where dynamic groundwater levels result in higher rates of nitrification and mineralization, while another N process that produces ammonium‐N competes with denitrification for limited nitrate‐N at deeper, more stagnant/poorly mixed depths. Ultimately, while it is unclear whether relict milldams are sources of N, limited denitrification rates indicate that they are not always effective sinks; thus, milldam removal—especially accompanied by removal of ammonium‐N rich legacy sediments—may improve riparian N buffering. 
    more » « less
  5. Abstract Hydrologic alterations associated with urbanization can weaken connections between riparian zones, streams, and uplands, leading to negative effects on the ability of riparian zones to intercept pollutants carried by surface water runoff and groundwater flow such as nitrate (NO3) and phosphate (PO43−). We analyzed the monthly water table as an indicator of riparian connectivity, along with groundwater NO3and PO43−concentrations, at four riparian sites within and near the Gwynns Falls Watershed in Baltimore, MD, from 1998 to 2018. The sites included one forested reference site (Oregon Ridge), two suburban riparian sites (Glyndon and Gwynnbrook), and one urban riparian site (Cahill) with at least two locations and four monitoring wells, located 5 m from the center of the stream, at each site. Results show an increase in connectivity as indicated by shallower water tables at two of the four sites studied: Glyndon and Cahill. This change in connectivity was associated with decreases in NO3at Glyndon and increases in PO43−at Glyndon, Gwynnbrook, and Cahill. These changes are consistent with previous studies showing that shallower water table depths increase anaerobic conditions, which increase NO3consumption by denitrification and decrease PO43−retention. The absence of change in the forested reference site, where climate would be expected to be the key driver, suggests that other drivers, including best management practices and stream restoration projects, could be affecting riparian water tables at the two suburban sites and the one urban site. Further research into the mechanisms behind these changes and site‐specific dynamics is needed. 
    more » « less