The telomeric DNA, a distal region of eukaryotic chromosome containing guanine-rich repetitive sequence of (TTAGGG)n, has been shown to adopt higher-order structures, specifically G-quadruplexes (G4s). Previous studies have demonstrated the implication of G4 in tumor inhibition through chromosome maintenance and manipulation of oncogene expression featuring their G-rich promoter regions. Besides higher order structures, several regulatory roles are attributed to DNA epigenetic markers. In this work, we investigated how the structural dynamics of a G-quadruplex, formed by the telomeric sequence, is affected by inosine, a prevalent modified nucleotide. We used the standard (TTAGGG)ntelomere repeats with guanosine mutated to inosine at each G position. Sequences (GGG)4, (IGG)4, (GIG)4, (GGI)4, (IGI)4, (IIG)4, (GII)4,and (III)4, bridged by TTA linker, are studied using biophysical experiments and molecular modeling. The effects of metal cations in quadruplex folding were explored in both Na+and K+containing buffers using CD and UV-melting studies. Our results show that antiparallel quadruplex topology forms with the native sequence (GGG)4and the terminal modified DNAs (IGG)4and (GGI)4in both Na+and K+containing buffers. Specifically, quadruplex hybrid was observed for (GGG)4in K+buffer. Among the other modified sequences, (GIG)4, (IGI)4and (GII)4show parallel features, while (IIG)4and (III)4show no detectable conformation in the presence of either Na+or K+. Our studies indicate that terminal lesions (IGG)4and (GGI)4may induce certain unknown conformations. The folding dynamics become undetectable in the presence of more than one inosine substitution except (IGI)4in both buffer ions. In addition, both UV melting and CD melting studies implied that in most cases the K+cation confers more thermodynamic stability compared to Na+. Collectively, our conformational studies revealed the diverse structural polymorphisms of G4 with position dependent G-to-I mutations in different ion conditions.
more »
« less
This content will become publicly available on August 1, 2026
8-Oxoguanine Disrupts G-Quadruplex DNA Stability and Modulates FANCJ AKKQ Peptide Binding
Guanine-rich nucleic acid sequences can adopt G-quadruplex (G4) structures, which pose barriers to DNA replication and repair. The FANCJ helicase contributes to genome stability by resolving these structures, a function linked to its G4-binding site that features an AKKQ amino acid motif. This site is thought to recognize oxidatively damaged G4, specifically those containing 8-oxoguanine (8oxoG) modifications. We hypothesize that FANCJ AKKQ recognition of 8oxoG-modified G4s (8oxoG4s) depends on the sequence context, the position of the lesion within the G4, and overall structural stability. Using fluorescence spectroscopy, we measured the binding affinities of a FANCJ AKKQ peptide for G4s formed by (GGGT)4, (GGGTT)4, and (TTAGGG)4 sequences. G4 conformation and thermal stability were assessed by circular dichroism spectroscopy. Each sequence was modified to include a single 8oxoG at the first (8oxo1), third (8oxo3), or fifth (8oxo5) guanine position. In potassium chloride (KCl), the most destabilized structures were (GGGT)4 8oxo1, (GGGTT)4 8oxo1, and (TTAGGG)4 8oxo5. In sodium chloride (NaCl), the most destabilized were (GGGT)4 8oxo1, (GGGTT)4 8oxo5, and (TTAGGG)4 8oxo5. FANCJ AKKQ binding affinities varied according to damage position and sequence context, with notable differences for (GGGT)4 in KCl and (TTAGGG)4 in NaCl. These findings support a model in which FANCJ binding to G4 and 8oxoG4 structures is modulated by both the oxidative damage position and the G4 local sequence environment.
more »
« less
- Award ID(s):
- 2142839
- PAR ID:
- 10640450
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 30
- Issue:
- 16
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 3424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract G‐quadruplexes (G4s) are non‐canonical DNA structures implicated in a number of biological processes. Small‐molecule ligands can alter stability and folding of G4s, which can potentially be exploited for therapeutic purposes. In this work, we investigate the interaction of telomeric DNA fragment fromTetrahymena thermophila(TET25, 5′‐G(TTGGGG)4‐3′) with a G4 ligand PyDH2 belonging to the bisquinolinium family. When alone, TET25 adopts a mixture of three conformations, with the most abundant being a four‐tetrad hybrid G4. In the presence of PyDH2, surprisingly, TET25 folds into an antiparallel chair G4, with PyDH2 intercalated between G‐tetrads 2 and 3, according to our crystal structure. The structure represents the second example, and the first crystallographic evidence, of ligand intercalation into a G4. In solution, the interaction of PyDH2 and TET25 leads to a number of complexes differing by G4 topology and binding stoichiometry, strong stabilization of G4 (∆Tm = 12.4 °C in the presence of one equiv. of PyDH2) and large hysteresis of ∼10 °C, suggesting that ligand binding and G4 folding processes are complex.more » « less
-
Abstract G-quadruplexes (G4s) are well known non-canonical DNA secondary structures that can form in human cells. Most of the tools available to investigate G4-biology rely on small molecule ligands that stabilise these structures. However, the development of probes that disrupt G4s is equally important to study their biology. In this study, we investigated the disruption of G4s using Locked Nucleic Acids (LNA) as invader probes. We demonstrated that strategic positioning of LNA-modifications within short oligonucleotides (10 nts.) can significantly accelerate the rate of G4-disruption. Single-molecule experiments revealed that short LNA-probes can promote disruption of G4s with mechanical stability sufficient to stall polymerases. We corroborated this using a single-step extension assay, revealing that short LNA-probes can relieve replication dependent polymerase-stalling at G4 sites. We further demonstrated the potential of such LNA-based probes to study G4-biology in cells. By using a dual-luciferase assay, we found that short LNA probes can enhance the expression of c-KIT to levels similar to those observed when the c-KIT promoter is mutated to prevent the formation of the c-KIT1 G4. Collectively, our data suggest a potential use of rationally designed LNA-modified oligonucleotides as an accessible chemical-biology tool for disrupting individual G4s and interrogating their biological functions in cells.more » « less
-
ABSTRACT The obligate human pathogen Neisseria gonorrhoeae alters its cell surface antigens to evade the immune system in a process known as antigenic variation (AV). During pilin AV, portions of the expressed pilin gene ( pilE ) are replaced with segments of silent pilin genes ( pilS ) through homologous recombination. The pilE-pilS exchange is initiated by formation of a parallel guanine quadruplex (G4) structure near the pilE gene, which recruits the homologous recombination machinery. The RecQ helicase, which has been proposed to aid AV by unwinding the pilE G4 structure, is an important component of this machinery. However, RecQ also promotes homologous recombination through G4-independent duplex DNA unwinding, leaving the relative importance of its G4 unwinding activity unclear. Previous investigations revealed a guanine-specific pocket (GSP) on the surface of RecQ that is required for G4, but not duplex, DNA unwinding. To determine whether RecQ-mediated G4 resolution is required for AV, N. gonorrhoeae strains that encode a RecQ GSP variant that cannot unwind G4 DNA were created. In contrast to the hypothesis that G4 unwinding by RecQ is important for AV, the RecQ GSP variant N. gonorrhoeae strains had normal AV levels. Analysis of a purified RecQ GSP variant confirmed that it retained duplex DNA unwinding activity but had lost its ability to unwind antiparallel G4 DNA. Interestingly, neither the GSP-deficient RecQ variant nor the wild-type RecQ could unwind the parallel pilE G4 nor the prototypical c- myc G4. Based on these results, we conclude that N. gonorrhoeae AV occurs independently of RecQ-mediated pilE G4 resolution. IMPORTANCE The pathogenic bacteria Neisseria gonorrhoeae avoids clearance by the immune system through antigenic variation (AV), the process by which immunogenic surface features of the bacteria are exchanged for novel variants. RecQ helicase is critical in AV and its role has been proposed to stem from its ability to unwind a DNA secondary structure known as a guanine quadruplex (G4) that is central to AV. In this work, we demonstrate that the role of RecQ in AV is independent of its ability to resolve G4s and that RecQ is incapable of unwinding the G4 in question. We propose a new model of RecQ’s role in AV where the G4 might recruit or orient RecQ to facilitate homologous recombination.more » « less
-
Through the NSF Future Manufacturing undergraduate research program at Pasadena City College (PCC), students utilize the tools of synthetic biology to build sustainable, DNA-based materials. The manipulation of DNA enables the construction of microscopic biochemical reactors through the formation of liquid-liquid phase-separated droplets, or DNA condensates. This research investigates the potential of DNA nanostars fused with G-tetraplexes, which can bind hemin, an iron-containing porphyrin co-factor, to form a DNAzyme capable of catalyzing peroxidation reactions within single condensate layers. The in vitro component of this research was enhanced by in silico coarse-grained molecular dynamics simulations, which generated 3D models of the DNA nanostars that allowed student researchers to visualize the behavior of the structures created in the laboratory. Leveraging this computational technique, student researchers developed educational resources and modular lessons to introduce these molecular simulations to a broad student audience at PCC. The simulation programs used, oxDNA and oxView, were instrumental in making this research accessible and engaging for diverse student groups. DNA nanostar simulations were integrated into the General, Organic, and Biochemistry curriculum at PCC, as well as during outreach events such as Girls Science Day, offering students insights into DNA nanostar dynamics and potential applications of DNA-based inventions. This paper details the use of simulation programs to recreate nucleic acid-based nanostructures, advancing the field of DNA nanotechnology. Molecular simulations helped the PCC research students develop experiments that demonstrate how enzymatic activity within DNA droplets can be achieved through G4 complexing. Simulating DNA nanostars with G4s was a profound educational exercise for students, as it taught them about the powerful synergy between in silico and in vitro experimentation. Students also learned about the limitations of modeling biomolecules using computational software, and our G4 simulation results may even inspire the integration of guanine-guanine interactions into the oxDNA program. These findings underscore the significant implications of in silico modeling and structural analysis in biochemical manufacturing and industrial applications, paving the way for further innovations in programmable biomolecular systems. By developing YouTube tutorials that teach students how to carry out nucleic acid simulations on any standard computer, the exploration of DNA dynamics and molecular programming is now widely accessible to both students and educators.more » « less
An official website of the United States government
