skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 19, 2026

Title: Multiphoton Luminescence Imaging: A Label-Free Tool for Visualizing the Long-Term Fate of Gold Nanoparticles in Tissue
Gold nanoparticles (AuNPs) are increasingly used in applications across the biomedical domain, yet their long-term biodistribution and biocompatibility remain poorly understood. Conventional brightfield microscopy imaging techniques often fail to detect AuNPs due to optical diffraction limits and lack of chromogenic contrast. Understanding the biodistribution and ultimate fate of these nonbiodegradable NPs is crucial for further development of AuNP-based therapeutics and diagnostics. Here, we present a label-free multiphoton luminescence (MPL) imaging workflow that enables sensitive detection of AuNPs in liver histology sections, even 1 year after intravenous (IV) administration. MPL imaging exploits the intrinsic nonlinear optical properties of AuNPs to generate broadband emission under ultrafast pulsed laser excitation, enabling subcellular localization without exogenous labels while having the ability to rapidly image entire organ sections. The intrinsic, distinct broadband MPL emission produced by gold allows us to study these NPs in their biological context without extrinsic labels while also faithfully representing the surrounding tissue architecture via autofluorescence and second harmonic generation. We demonstrate that MPL imaging detects up to 98% more AuNP-positive regions than brightfield microscopy in challenging low-dose (1 nM) conditions and requires no modification of standard histology workflows. Correlative imaging with SEM–EDS confirms high spatial specificity (AUC = 0.955) of MPL for AuNP localization. Dose-dependent retention patterns were observed across liver tissue, and MPL analysis showed strong correlation with ICP–MS quantification. Importantly, histological and immunohistochemical analyses (Masson’s trichrome, CD3, and TUNEL) revealed no significant fibrosis, immune activation, or apoptosis in liver tissue at either low (1 nM) or high (10 nM) doses at 1 year post IV administration. These findings establish MPL imaging as a robust, label-free tool for long-term tracking of AuNPs in biological tissue and highlight its potential for improving biodistribution and safety assessments.  more » « less
Award ID(s):
2223834
PAR ID:
10640455
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
ACS Publications
Date Published:
Journal Name:
ACS Nano
Volume:
19
Issue:
32
ISSN:
1936-0851
Page Range / eLocation ID:
29286 to 29300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Introduction: Humans are intentionally exposed to gold nanoparticles (AuNPs) where they are used in variety of biomedical applications as imaging and drug delivery agents as well as diagnostic and therapeutic agents currently in clinic and in a variety of upcoming clinical trials. Consequently, it is critical that we gain a better understanding of how physiochemical properties such as size, shape, and surface chemistry drive cellular uptake and AuNP toxicity in vivo. Understanding and being able to manipulate these physiochemical properties will allow for the production of safer and more efficacious use of AuNPs in biomedical applications. Methods and Materials: Here, AuNPs of three sizes, 5 nm, 10 nm, and 20 nm, were coated with a lipid bilayer composed of sodium oleate, hydrogenated phosphatidylcholine, and hexanethiol. To understand how the physical features of AuNPs influence uptake through cellular membranes, sum frequency generation (SFG) was utilized to assess the interactions of the AuNPs with a biomimetic lipid monolayer composed of a deuterated phospholipid 1.2-dipalmitoyl-d62-sn-glycero-3-phosphocholine (dDPPC). Results and Discussion: SFG measurements showed that 5 nm and 10 nm AuNPs are able to phase into the lipid monolayer with very little energetic cost, whereas, the 20 nm AuNPs warped the membrane conforming it to the curvature of hybrid lipid-coated AuNPs. Toxicity of the AuNPs were assessed in vivo to determine how AuNP curvature and uptake influence cell health. In contrast, in vivo toxicity tested in embryonic zebrafish showed rapid toxicity of the 5 nm AuNPs, with significant 24 hpf mortality occurring at concentrations ≥ 20 mg/L, whereas the 10 nm and 20 nm AuNPs showed no significant mortality throughout the five-day experiment. Conclusion: By combining information from membrane models using SFG spectroscopy with in vivo toxicity studies, a better mechanistic understanding of how nanoparticles (NPs) interact with membranes is developed to understand how the physiochemical features of AuNPs drive nanoparticle–membrane interactions, cellular uptake, and toxicity. 
    more » « less
  2. ConspectusGold nanoparticles (AuNPs) exhibit unique size- and shape-dependent properties not obtainable at the macroscale. Gold nanorods (AuNRs), with their morphology-dependent optical properties, ability to convert light to heat, and high surface-to-volume ratios, are of great interest for biosensing, medicine, and catalysis. While the gold core provides many fascinating properties, this Account focuses on AuNP soft surface coatings, which govern the interactions of nanoparticles with the local environments. Postmodification of AuNP surface chemistry can greatly alter NP colloidal stability, nano-bio interactions, and functionality. Polyelectrolyte coatings provide controllable surface-coating thickness and charge, which impact the composition of the acquired corona in biological settings. Covalent modification, in which covalently bound ligands replace the original capping layer, is often performed with thiols and disulfides due to their ability to replace native coatings. N-heterocyclic carbenes and looped peptides expand the possible functionalities of the ligand layer.The characterization of surface ligands bound to AuNPs, in terms of ligand density and dynamics, remains a challenge. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for understanding molecular structures and dynamics. Our recent NMR work on AuNPs demonstrated that NMR data were obtainable for ligands on NPs with diameters up to 25 nm for the first time. This was facilitated by the strong proton NMR signals of the trimethylammonium headgroup, which are present in a distinct regime from other ligand protons’ signals. Ligand density analyses showed that the smallest AuNPs (below 4 nm) had the largest ligand densities, yet spin–spin T2 measurements revealed that these smallest NPs also had the most mobile ligand headgroups. Molecular dynamics simulations were able to reconcile these seemingly contradictory results.While NMR spectroscopy provides ligand information averaged over many NPs, the ligand distribution on individual particles’ surfaces must also be probed to fully understand the surface coating. Taking advantage of improvements in electron energy loss spectroscopy (EELS) detectors employed with scanning transmission electron microscopy (STEM), a single-layer graphene substrate was used to calibrate the carbon K-edge EELS signal, allowing quantitative imaging of the carbon atom densities on AuNRs with sub-nanometer spatial resolution. In collaboration with others, we revealed that the mean value for surfactant-bilayer-coated AuNRs had 10–30% reduced ligand density at the ends of the rods compared to the sides, confirming prior indirect evidence for spatially distinct ligand densities.Recent work has found that surface ligands on nanoparticles can, somewhat surprisingly, enhance the selectivity and efficiency of the electrocatalytic reduction of CO2 by controlling access to the active site, tuning its electronic and chemical environment, or denying entry to impurities that poison the nanoparticle surface to facilitate reduction. Looking to the future, while NMR and EELS are powerful and complementary techniques for investigating surface coatings on AuNPs, the frontier of this field includes the development of methods to probe the surface ligands of individual NPs in a high-throughput manner, to monitor nano-bio interactions within complex matrices, and to study structure–property relationships of AuNPs in biological systems. 
    more » « less
  3. The concept of “cloaking” an object is a very attractive one, especially in the visible (VIS) and near infra-red (NIR) regions of the electromagnetic spectrum, as that would reduce the visibility of an object to the eye. One possible route to achieving this goal is by leveraging the plasmonic property of metallic nanoparticles (NPs). We model and simulate light in the VIS and NIR scattered by a core of a homogeneous medium, covered by plasmonic cloak that is a spherical shell composed of gold nanoparticles (AuNPs). To consider realistic, scalable, and robust plasmonic cloaks that are comparable, or larger, in size to the wavelength, we introduce a multiscale simulation platform. This model uses the multiple scattering theory of Foldy and Lax to model interactions of light with AuNPs combined with the method of fundamental solutions to model interactions with the core. Numerical results of our simulations for the scattering cross-sections of core-shell composite indicate significant scattering suppression of up to 50% over a substantial portion of the desired spectral range (400 - 600 nm) for cores as large as 900 nm in diameter by a suitable combination of AuNP sizes and filling fractions of AuNPs in the shell. 
    more » « less
  4. Engineered gold nanoparticles (AuNPs) have great potential in many applications due to their tunable optical properties, facile synthesis, and surface functionalization via thiol chemistry. When exposed to a biological environment, NPs are coated with a protein corona that can alter the NPs’ biological identity but can also affect the proteins’ structures and functions. Protein disulfide isomerase (PDI) is an abundant protein responsible for the disulfide formation and isomerization that contribute to overall cell redox homeostasis and signaling. Given that AuNPs are widely employed in nanomedicine and PDI plays a functional role in various diseases, the interactions between oxidized (oPDI) and reduced (rPDI) with 50 nm citrate-coated AuNPs (AuNPs) are examined in this study using various techniques. Upon incubation, PDI adsorbs to the AuNP surface, which leads to a reduction in its enzymatic activity despite limited changes in secondary structures. Partial enzymatic digestion followed by mass spectrometry analysis shows that orientation of PDI on the NP surface is dependent on both its oxidation state and the PDI:AuNP incubation ratios. 
    more » « less
  5. Abstract: Thin tissue slice based histology has been used as a gold standard for disease diagnosis since over a hundred years ago. However, histopathological evaluation on two-dimensional slides suffers from large variations due to limited sampling. To improve the diagnostic accuracy, three-dimensional (3D) histology is performed through serial sectioning, staining, imaging and reconstruction of individual slices, which is highly time-consuming and labor intensive. We developed a volumetric stimulated Raman scattering (SRS) imaging method, which provides histology-like information in 3D context without the need for staining with dyes. Using a small molecule clearing agent, formamide, we performed tissue clearing within 30 min and achieved an imaging depth up to 500 µm in highly scattered tissues, including brain, kidney, liver and lung. Through a two-color SRS imaging scheme, we obtained histology-like images in cleared brain tissue slices. Our method has the potential for 3D tissue histopathology to improve the accuracy of histopathological examination. https://doi.org/10.1364/BOE.10.004329 
    more » « less