Abstract An invariant domain preserving arbitrary Lagrangian-Eulerian method for solving non-linear hyperbolic systems is developed. The numerical scheme is explicit in time and the approximation in space is done with continuous finite elements. The method is made invariant domain preserving for the Euler equations using convex limiting and is tested on various benchmarks.
more »
« less
This content will become publicly available on June 1, 2026
Invariant-domain preserving and locally mass conservative approximation of the Lagrangian hydrodynamics equations
In this paper we construct an explicit approximation for the Lagrangian hydrodynamics equations equipped with an arbitrary equation of state. The approximation of the state variable is done with piecewise constant finite elements and the approximation of the mesh motion is done with higher-order continuous finite elements. The method is invariant-domain preserving and locally mass conservative. The purpose of this method is to be used in combination with higher-order methods to make them invariant domain preserving as well.
more »
« less
- Award ID(s):
- 2110868
- PAR ID:
- 10640467
- Publisher / Repository:
- Computer Methods in Applied Mechanics and Engineering
- Date Published:
- Journal Name:
- Computer methods in applied mechanics and engineering
- ISSN:
- 0045-7825
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper proposes an invariant-domain preserving approximation technique for nonlinear conservation systems that is high-order accurate in space and time. The algorithm mixes a high order finite element method with an invariant-domain preserving low-order method that uses the closest neighbor stencil. The construction of the flux of the low-order method is based on an idea from Abgrall et al. (2017). The mass flux of the low-order and the high-order methods are identical on each finite element cell. This allows for mass preserving and invariant-domain preserving limiting.more » « less
-
The paper focuses on first-order invariant-domain preserving approximations of hyperbolic systems. We propose a new way to estimate the artificial viscosity that has to be added to make explicit, conservative, consistent numerical methods invariant-domain preserving and entropy inequality compliant. Instead of computing an upper bound on the maximum wave speed in Riemann problems, we estimate a minimum wave speed in the said Riemann problems such that the approximation satisfies predefined invariant-domain properties and predefined entropy inequalities. This technique eliminates non-essential fast waves from the construction of the artificial viscosity, while preserving pre-assigned invariant-domain properties and entropy inequalities.more » « less
-
For a given PDE problem, three main factors affect the accuracy of FEM solutions: basis order, mesh resolution, and mesh element quality. The first two factors are easy to control, while controlling element shape quality is a challenge, with fundamental limitations on what can be achieved. We propose to use p-refinement (increasing element degree) to decouple the approximation error of the finite element method from the domain mesh quality for elliptic PDEs. Our technique produces an accurate solution even on meshes with badly shaped elements, with a slightly higher running time due to the higher cost of high-order elements. We demonstrate that it is able to automatically adapt the basis to badly shaped elements, ensuring an error consistent with high-quality meshing, without any per-mesh parameter tuning. Our construction reduces to traditional fixed-degree FEM methods on high-quality meshes with identical performance. Our construction decreases the burden on meshing algorithms, reducing the need for often expensive mesh optimization and automatically compensates for badly shaped elements, which are present due to boundary con- straints or limitations of current meshing methods. By tackling mesh gen- eration and finite element simulation jointly, we obtain a pipeline that is both more efficient and more robust than combinations of existing state of the art meshing and FEM algorithms.more » « less
-
In this article, we introduce an invariant‐region‐preserving (IRP) limiter for thep‐system and the corresponding viscousp‐system, both of which share the same invariant region. Rigorous analysis is presented to show that for smooth solutions the order of approximation accuracy is not destroyed by the IRP limiter, provided the cell average stays away from the boundary of invariant region. Moreover, this limiter is explicit, and easy for computer implementation. A generic algorithm incorporating the IRP limiter is presented for high order finite volume type schemes as long as the evolved cell average of the underlying scheme stays strictly within the invariant region. For high order discontinuous Galerkin (DG) schemes to thep‐system, sufficient conditions are obtained for cell averages to stay in the invariant region. For the viscousp‐system, we design both second and third order IRP DG schemes. Numerical experiments are provided to test the proven properties of the IRP limiter and the performance of IRP DG schemes.more » « less
An official website of the United States government
